1. Mục tiêu
a) Về kiến thức
+ Củng số kiến thức:
- Lũy thừa với số mũ tự nhiên. Nhân hai lũy thừa cùng cơ số.
- Chia hai lũy thừa cùng cơ số.
- ƯCLN & BCNN.
b) Về kĩ năng: Giải bài tập.
c) Về thái độ: Ham học, yêu thích môn học.
2. Chuẩn bị của GV và HS
a) Chuẩn bị của GV: Giáo án.
b) Chuẩn bị của HS: Đồ dùng học tập, phiếu học tập.
3. Phương pháp giảng dạy
4. Tiến trình bài dạy
a) Kiểm tra bài cũ
b) Dạy nội dung bài mới
TG Hoạt động của GV & HS Nội dung chính
5'
15'
5'
20'
+ GV: Nêu phần lý thuyết cho HS. Sau đó cùng HS làm bài tập.
Bài 1: Viết gọn các tích sau:
a) 3.3.3.3.3;
b) 12.12.3.4;
c) 100.10.10.
Bài 2: Viết các số sau dưới dạng lũy thừa của 10
a) 100;
b) 1000;
c) .
Bài 3: Tính giá trị của lũy thừa:
a) 25; b) 54.
Bài 4: Viết kết quả các phép tính sau dưới dạng một lũy thừa:
a) 75.72.7;
b) 20.2.24;
c) 58: 52.
Bài 5: Tìm số tự nhiên n, biết:
a) 3n.3 = 243;
b) 7n : 74 = 49.
+ GV: Yêu cầu HS nhắc lại các bước hay quy tắc để tìm ƯCLN & BCNN.
Bài 6: Tìm ƯCLN của các số sau:
a) 108 và 240;
b) 450; 1260 và 945.
Bài 7: Tìm ƯCLN của các số sau:
a) 54; 90 và 18;
b) 36; 40 và 1.
Bài 8: Tìm BCNN của các số sau:
a) 24 và 80;
b) 90; 99 và 84.
A1 – Trọng tâm kiến thức
1. Lũy thừa bậc n của số a là tích của n thừa số bằng nhau, mỗi thừa số bằng a
(n ≠ 0)
a gọi là cơ số, n gọi là số mũ.
Quy ước: a1 = a.
+ Ta gọi a2 là a bình phương; a3 là a lập phương.
+ Số chính phương là số bằng bình phương của một số tự nhiên.
2. Khi nhân hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và cộng các số mũ.
3. Khi chia hai lũy thừa cùng cơ số (khác 0), ta giữ nguyên cơ số và trừ các số mũ.
Quy ước: a0 = 1 .
B1 – Bài tập
Bài 1: Giải
a) 3.3.3.3.3 = 35
b) 12.12.3.4 = 12.12.12 = 123
c) 100.10.10 = 10.10.10.10 = 104
hoặc 100.10.10 = 100.100 = 1002
Bài 2: Giải
a) 100 = 10.10 = 102;
b) 1000 = 10.10.10 = 103;
c) .
Bài 3: Giải
a) 25 = 2.2.2.2.2 = 32
b) 54 = 5.5.5.5 = 625
Bài 4: Giải
a) 75.72.7 = 75 + 2 + 1 = 78.
b) 20.2.24 = 20 + 1 + 4 = 25.
c) 58 : 52 = 58 – 2 = 56.
Bài 5: Giải
a) Ta có: 3n.3 = 243
Suy ra 3n + 1 = 35
Do đó n + 1 = 5
n = 4
b) Ta có: 7n : 74 = 49
Suy ra 7n – 4 = 72
Do đó n – 4 = 2
n = 6
A2 – ƯCLN & BCNN
1. ƯCLN theo 3 bước.
2. BCNN theo 3 bước.
B2 – Bài tập
Bài 6: Giải
a) 108 = 22.33
240 = 24.3.5
ƯCLN (108; 240) = 22.3 = 12
b) 450 = 2.32.52
1260 = 22.32.5.7
945 = 33.5.7
ƯCLN(450; 1260; 945) = 32.5 = 45
Bài 7: Giải
a) Vì 54 ⋮ 18; 90 ⋮ 18
nên ƯCLN(54; 90; 18) = 18.
b) Số 1 chỉ có một ước là 1.
Do đó ƯCLN(36; 40; 1) = 1.
Bài 8: Giải
a) Ta có: 24 = 23.3; 80 = 24.5
BCNN(24; 80) = 24.3.5 = 240.
b) Ta có: 90 = 2.32.5
99 = 32.11
84 = 22.3.7
BCNN(90; 99; 84) = 22.32.5.7.11
= 13860.
ÔN TẬP Ngày soạn: 11/ 12/ 2012 Ngày dạy Lớp Sĩ số Vắng Ghi chú ____/____/ 2012 6 Mục tiêu Về kiến thức + Củng số kiến thức: Lũy thừa với số mũ tự nhiên. Nhân hai lũy thừa cùng cơ số. Chia hai lũy thừa cùng cơ số. ƯCLN & BCNN. Về kĩ năng: Giải bài tập. Về thái độ: Ham học, yêu thích môn học. Chuẩn bị của GV và HS Chuẩn bị của GV: Giáo án. Chuẩn bị của HS: Đồ dùng học tập, phiếu học tập. Phương pháp giảng dạy Tiến trình bài dạy Kiểm tra bài cũ Dạy nội dung bài mới TG Hoạt động của GV & HS Nội dung chính 5' 15' 5' 20' + GV: Nêu phần lý thuyết cho HS. Sau đó cùng HS làm bài tập. Bài 1: Viết gọn các tích sau: a) 3.3.3.3.3; b) 12.12.3.4; c) 100.10.10. Bài 2: Viết các số sau dưới dạng lũy thừa của 10 a) 100; b) 1000; c) . Bài 3: Tính giá trị của lũy thừa: a) 25; b) 54. Bài 4: Viết kết quả các phép tính sau dưới dạng một lũy thừa: a) 75.72.7; b) 20.2.24; c) 58: 52. Bài 5: Tìm số tự nhiên n, biết: a) 3n.3 = 243; b) 7n : 74 = 49. + GV: Yêu cầu HS nhắc lại các bước hay quy tắc để tìm ƯCLN & BCNN. Bài 6: Tìm ƯCLN của các số sau: a) 108 và 240; b) 450; 1260 và 945. Bài 7: Tìm ƯCLN của các số sau: a) 54; 90 và 18; b) 36; 40 và 1. Bài 8: Tìm BCNN của các số sau: a) 24 và 80; b) 90; 99 và 84. A1 – Trọng tâm kiến thức 1. Lũy thừa bậc n của số a là tích của n thừa số bằng nhau, mỗi thừa số bằng a (n ≠ 0) a gọi là cơ số, n gọi là số mũ. Quy ước: a1 = a. + Ta gọi a2 là a bình phương; a3 là a lập phương. + Số chính phương là số bằng bình phương của một số tự nhiên. 2. Khi nhân hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và cộng các số mũ. 3. Khi chia hai lũy thừa cùng cơ số (khác 0), ta giữ nguyên cơ số và trừ các số mũ. Quy ước: a0 = 1 . B1 – Bài tập Bài 1: Giải a) 3.3.3.3.3 = 35 b) 12.12.3.4 = 12.12.12 = 123 c) 100.10.10 = 10.10.10.10 = 104 hoặc 100.10.10 = 100.100 = 1002 Bài 2: Giải a) 100 = 10.10 = 102; b) 1000 = 10.10.10 = 103; c) . Bài 3: Giải a) 25 = 2.2.2.2.2 = 32 b) 54 = 5.5.5.5 = 625 Bài 4: Giải a) 75.72.7 = 75 + 2 + 1 = 78. b) 20.2.24 = 20 + 1 + 4 = 25. c) 58 : 52 = 58 – 2 = 56. Bài 5: Giải a) Ta có: 3n.3 = 243 Suy ra 3n + 1 = 35 Do đó n + 1 = 5 n = 4 b) Ta có: 7n : 74 = 49 Suy ra 7n – 4 = 72 Do đó n – 4 = 2 n = 6 A2 – ƯCLN & BCNN 1. ƯCLN theo 3 bước. 2. BCNN theo 3 bước. B2 – Bài tập Bài 6: Giải a) 108 = 22.33 240 = 24.3.5 ƯCLN (108; 240) = 22.3 = 12 b) 450 = 2.32.52 1260 = 22.32.5.7 945 = 33.5.7 ƯCLN(450; 1260; 945) = 32.5 = 45 Bài 7: Giải a) Vì 54 ⋮ 18; 90 ⋮ 18 nên ƯCLN(54; 90; 18) = 18. b) Số 1 chỉ có một ước là 1. Do đó ƯCLN(36; 40; 1) = 1. Bài 8: Giải a) Ta có: 24 = 23.3; 80 = 24.5 BCNN(24; 80) = 24.3.5 = 240. b) Ta có: 90 = 2.32.5 99 = 32.11 84 = 22.3.7 BCNN(90; 99; 84) = 22.32.5.7.11 = 13860. Củng cố, luyện tập Hướng dẫn học sinh tự học ở nhà Rút kinh nghiệm giờ dạy Phê duyệt của Ban giám hiệu Phó Hiệu trưởng Bế Thị Lan
Tài liệu đính kèm: