I. Ôn tập lý thuyết.
1. Lũy thừa bậc n của số a là tích của n thừa số bằng nhau, mỗi thừa số bằng a
( n 0). a gọi là cơ số, n gọi là số mũ.
2. Nhân hai luỹ thừa cùng cơ số
3. Chia hai luỹ thừa cùng cơ số ( a 0, m n)
Quy ước a0 = 1 ( a 0)
4. Luỹ thừa của luỹ thừa
5. Luỹ thừa một tích
6. Một số luỹ thừa của 10:
- Một nghìn: 1 000 = 103; - Một vạn: 10 000 = 104; - Một triệu: 1 000 000 = 106
- Một tỉ: 1 000 000 000 = 109 ; Tổng quát: nếu n là số tự nhiên khác 0 thì: 10n =
II. Bài tập
Dạng 1: Các bài toán về luỹ thừa
Bài 1: Viết các tích sau đây dưới dạng một luỹ thừa của một số:
a/ A = 82.324 b/ B = 273.94.243
ĐS: a/ A = 82.324 = 26.220 = 226. hoặc A = 413 ; b/ B = 273.94.243 = 322
Bài 2: Tìm các số mũ n sao cho luỹ thừa 3n thảo mãn điều kiện: 25 < 3n=""><>
Hướng dẫn Ta có: 32 = 9, 33 = 27 > 25, 34 = 41, 35 = 243 < 250="" nhưng="" 36="243." 3="729"> 250
Vậy với số mũ n = 3,4,5 ta có 25 < 3n=""><>
Bài 3: So sách các cặp số sau:
a/ A = 275 và B = 2433 b/ A = 2 300 và B = 3200
Hướng dẫn
a/ Ta có A = 275 = (33)5 = 315 và B = (35)3 = 315 Vậy A = B
b/ A = 2 300 = 23.100 = 8100 và B = 3200 = 32.100 = 9100
Vì 8 < 9="" nên="" 8100="">< 9100="" và="" a=""><>
Ghi chú: Trong hai luỹ thừa có cùng số mũ, luỹ thừa nào có cơ số lớn hơn thì lớn hơn.
Dạng 2: Bình phương, lập phương
Bài 1: Cho a là một số tự nhiên thì: a2 gọi là bình phương của a hay a bình phương; a3 gọi là lập phương của a hay a lập phương
a/ Tìm bình phương của các số: 11, 101, 1001, 10001, 10001, 1000001, ,
b/ Tìm lập phương của các số: 11, 101, 1001, 10001, 10001, 1000001, ,
Hướng dẫn
Tổng quát 2 = 100 0200 01
3 = 100 0300 0300 01
- Cho HS dùng máy tính để kiểm tra lại.
Bài 2: Tính và so sánh
a/ A = (3 + 5)2 và B = 32 + 52 b/ C = (3 + 5)3 và D = 33 + 53
ĐS: a/ A > B ; b/ C > D
Lưu ý HS tránh sai lằm khi viết (a + b)2 = a2 + b2 hoặc (a + b)3 = a3 + b3
LUỸ THỪA VỚI SỐ MŨ TỰ NHIÊN I. Ôn tập lý thuyết. 1. Lũy thừa bậc n của số a là tích của n thừa số bằng nhau, mỗi thừa số bằng a n thừa số a ( n 0). a gọi là cơ số, n gọi là số mũ. 2. Nhân hai luỹ thừa cùng cơ số 3. Chia hai luỹ thừa cùng cơ số ( a0, m n) Quy ước a0 = 1 ( a0) 4. Luỹ thừa của luỹ thừa 5. Luỹ thừa một tích 6. Một số luỹ thừa của 10: - Một nghìn: 1 000 = 103; - Một vạn: 10 000 = 104; - Một triệu: 1 000 000 = 106 n thừa số 0 - Một tỉ: 1 000 000 000 = 109 ; Tổng quát: nếu n là số tự nhiên khác 0 thì: 10n = II. Bài tập Dạng 1: Các bài toán về luỹ thừa Bài 1: Viết các tích sau đây dưới dạng một luỹ thừa của một số: a/ A = 82.324 b/ B = 273.94.243 ĐS: a/ A = 82.324 = 26.220 = 226. hoặc A = 413 ; b/ B = 273.94.243 = 322 Bài 2: Tìm các số mũ n sao cho luỹ thừa 3n thảo mãn điều kiện: 25 < 3n < 250 Hướng dẫn Ta có: 32 = 9, 33 = 27 > 25, 34 = 41, 35 = 243 250 Vậy với số mũ n = 3,4,5 ta có 25 < 3n < 250 Bài 3: So sách các cặp số sau: a/ A = 275 và B = 2433 b/ A = 2 300 và B = 3200 Hướng dẫn a/ Ta có A = 275 = (33)5 = 315 và B = (35)3 = 315 Vậy A = B b/ A = 2 300 = 23.100 = 8100 và B = 3200 = 32.100 = 9100 Vì 8 < 9 nên 8100 < 9100 và A < B. Ghi chú: Trong hai luỹ thừa có cùng số mũ, luỹ thừa nào có cơ số lớn hơn thì lớn hơn. Dạng 2: Bình phương, lập phương Bài 1: Cho a là một số tự nhiên thì: a2 gọi là bình phương của a hay a bình phương; a3 gọi là lập phương của a hay a lập phương k số 0 a/ Tìm bình phương của các số: 11, 101, 1001, 10001, 10001, 1000001, , k số 0 b/ Tìm lập phương của các số: 11, 101, 1001, 10001, 10001, 1000001, , Hướng dẫn k số 0 k số 0 k số 0 Tổng quát 2 = 100020001 k số 0 k số 0 k số 0 k số 0 3 = 1000300030001 - Cho HS dùng máy tính để kiểm tra lại. Bài 2: Tính và so sánh a/ A = (3 + 5)2 và B = 32 + 52 b/ C = (3 + 5)3 và D = 33 + 53 ĐS: a/ A > B ; b/ C > D Lưu ý HS tránh sai lằm khi viết (a + b)2 = a2 + b2 hoặc (a + b)3 = a3 + b3 Dạng 3: Thứ tự thực hiện các phép tính - ước lượng các phép tính - Yêu cầu HS nhắc lại thứ tự thực hiện các phép tính đã học. - Để ước lượng các phép tính, người ta thường ước lượng các thành phần của phép tính Bài 1: Tính giá trị của biểu thức: A = 2002.20012001 – 2001.20022002 Hướng dẫn A = 2002.(20010000 + 2001) – 2001.(20020000 + 2002) = 2002.(2001.104 + 2001) – 2001.(2002.104 + 2001) = 2002.2001.104 + 2002.2001 – 2001.2002.104 – 2001.2002= 0 Bài 2: Thực hiện phép tính a/ A = (456.11 + 912).37 : 13: 74 b/ B = [(315 + 372).3 + (372 + 315).7] : (26.13 + 74.14) ĐS: A = 228 B = 5 Bài 3: Tính giá trị của biểu thức a/ 12:{390: [500 – (125 + 35.7)]} b/ 12000 –(1500.2 + 1800.3 + 1800.2:3) ĐS: a/ 4 b/ 2400 Dạng 4: Tìm x, biết: a/ 541 + (218 – x) = 735 (ĐS: x = 24) b/ 96 – 3(x + 1) = 42 (ĐS: x = 17) c/ ( x – 47) – 115 = 0 (ĐS: x = 162) d/ (x – 36):18 = 12 (ĐS: x = 252) e/ 2x = 16 (ĐS: x = 4) f) x50 = x (ĐS: x )
Tài liệu đính kèm: