Giáo án phụ đạo môn Toán học Lớp 6 - Phần số học - Lê Thị Thùy Dương

Giáo án phụ đạo môn Toán học Lớp 6 - Phần số học - Lê Thị Thùy Dương

A> MỤC TIÊU

- Ôn tập lại các tính chất của phép cộng và phép nhân, phép trừ và phép chia.

- Rèn luyện kỹ năng vận dụng các tính chất trên vào các bài tập tính nhẩm, tính nhanh và giải

toán một cách hợp lý.

- Vận dụng việc tìm số phần tử của một tập hợp đã được học trước vào một số bài toán.

- Hướng dẫn HS cách sử dụng máy tính bỏ túi.

- Giới thiệu HS về ma phương.

B> NỘI DUNG

I. Ôn tập lý thuyết.

Câu 1: Phép cộng và phép nhân có những tính chất cơ bản nào?

Câu 2: Phép trừ và phép chia có những tính chất cơ bản nào?

II. Bài tập

Dạng 1: Các bài toán tính nhanh

Bài 1: Tính tổng sau đây một cách hợp lý nhất.

a/ 67 + 135 + 33

b/ 277 + 113 + 323 + 87

ĐS: a/ 235b/ 800

Bài 2: Tính nhanh các phép tính sau:

a/ 8 x 17 x 125

b/ 4 x 37 x 25

ĐS: a/ 17000 b/ 3700

Bài 3: Tính nhanh một cách hợp lí:

a/ 997 + 86

b/ 37. 38 + 62. 37

c/ 43. 11; 67. 101; 423. 1001

d/ 67. 99; 998. 34

pdf 64 trang Người đăng lananh572 Lượt xem 713Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án phụ đạo môn Toán học Lớp 6 - Phần số học - Lê Thị Thùy Dương", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
TRƯỜNG THCS LÊ A PHỤ ĐẠO TOÁN 6 
LÊ THỊ THÙY DƯƠNG 1 
Chủ đề 1: TẬP HỢP 
A> MỤC TIÊU 
- Rèn HS kỉ năng viết tập hợp, viết tập hợp con của một tập hợp cho trước, sử dụng đúng, 
chính xác các kí hiệu , , , ,ÎÏ Ì É Æ . 
- Sự khác nhau giữa tập hợp *,N N 
- Biết tìm số phần tử của một tập hợp được viết dưới dạng dãy số cóquy luật. 
- Vận dụng kiến thức toán học vào một số bài toán thực tế. 
B> NỘI DUNG 
I. Ôn tập lý thuyết. 
Câu 1: Hãy cho một số VD về tập hợp thường gặp trong đời sống hàng ngày và một số VD về 
tập hợp thường gặp trong toán học? 
Câu 2: Hãy nêu cách viết, các ký hiệu thường gặp trong tập hợp. 
Câu 3: Một tập hợp có thể có bao nhiêu phần tử? 
Câu 4: Có gì khác nhau giữa tập hợp N và *N ? 
II. Bài tập 
Dạng 1: Rèn kĩ năng viết tập hợp, viết tập hợp con, sử dụng kí hiệu 
Bài 1: Cho tập hợp A là các chữ cái trong cụm từ “Thành phố Hồ Chí Minh” 
a. Hãy liệt kê các phần tử của tập hợp A. 
b. Điền kí hiệu thích hợp vào ô vuông 
a) A ; c) A ;c) A 
Hướng dẫn 
a/ A = {a, c, h, I, m, n, ô, p, t} 
b/ b AÏ c AÎ h AÎ 
Lưu ý HS: Bài toán trên không phân biệt chữ in hoa và chữ in thường trong cụm từ đã cho. 
Bài 2: Cho tập hợp các chữ cái X = {A, C, O} 
a/ Tìm chụm chữ tạo thành từ các chữ của tập hợp X. 
b/ Viết tập hợp X bằng cách chỉ ra các tính chất đặc trưng cho các phần tử của X. 
Hướng dẫn 
a/ Chẳng hạn cụm từ “CA CAO” hoặc “CÓ CÁ” 
b/ X = {x: x-chữ cái trong cụm chữ “CA CAO”} 
Bài 3: Chao các tập hợp 
A = {1; 2; 3; 4; 5; 6} ; B = {1; 3; 5; 7; 9} 
a/ Viết tập hợp C các phần tử thuộc A và không thuộc B. 
b/ Viết tập hợp D các phần tử thuộc B và không thuộc A. 
c/ Viết tập hợp E các phần tử vừa thuộc A vừa thuộc B. 
d/ Viết tập hợp F các phần tử hoặc thuộc A hoặc thuộc B. 
Hướng dẫn: 
a/ C = {2; 4; 6} 
b/ D = {5; 9} 
c/ E = {1; 3; 5} 
d/ F = {1; 2; 3; 4; 5; 6; 7; 8; 9} 
Bài 4: Cho tập hợp A = {1; 2; a; b} 
TRƯỜNG THCS LÊ A PHỤ ĐẠO TOÁN 6 
LÊ THỊ THÙY DƯƠNG 2 
a/ Hãy chỉ rõ các tập hợp con của A có 1 phần tử. 
b/ Hãy chỉ rõ các tập hợp con của A có 2 phần tử. 
c/ Tập hợp B = {a, b, c} có phải là tập hợp con của A không? 
Hướng dẫn 
a/ {1} { 2} { a } { b} 
b/ {1; 2} {1; a} {1; b} {2; a} {2; b} { a; b} 
c/ Tập hợp B không phải là tập hợp con của tập hợp A bởi vì c BÎ nhưng c AÏ 
Bài 5: Cho tập hợp B = {x, y, z} . Hỏi tập hợp B có tất cả bao nhiêu tập hợp con? 
Hướng dẫn 
- Tập hợp con của B không có phần từ nào là Æ . 
- Tập hợp con của B có 1phần từ là {x} { y} { z } 
- Các tập hợp con của B có hai phần tử là {x, y} { x, z} { y, z } 
- Tập hợp con của B có 3 phần tử chính là B = {x, y, z} 
Vậy tập hợp A có tất cả 8 tập hợp con. 
Ghi chú. Một tập hợp A bất kỳ luôn có hai tập hợp con đặc biệt. Đó là tập hợp rỗng Æ và 
chính tập hợp A. Ta quy ước Æ là tập hợp con của mỗi tập hợp. 
Bài 6: Cho A = {1; 3; a; b} ; B = {3; b} 
Điền các kí hiệu , ,ÎÏ Ì thích hợp vào ô vuông 
1 ý A ; 3 ý A ; 3 ý B ; B ý A 
Bài 7: Cho các tập hợp 
{ }/ 9 99A x N x= Î < < ; { }* / 100B x N x= Î < 
Hãy điền dấu Ì hayÉ vào các ô dưới đây 
N ý N* ; A ý B 
Dạng 2: Các bài tập về xác định số phần tử của một tập hợp 
Bài 1: Gọi A là tập hợp các số tự nhiên có 3 chữ số. Hỏi tập hợp A có bao nhiêu phần tử? 
Hướng dẫn: 
Tập hợp A có (999 – 100) + 1 = 900 phần tử. 
Bài 2: Hãy tính số phần tử của các tập hợp sau: 
a/ Tập hợp A các số tự nhiên lẻ có 3 chữ số. 
b/ Tập hợp B các số 2, 5, 8, 11, , 296. 
c/ Tập hợp C các số 7, 11, 15, 19, , 283. 
Hướng dẫn 
a/ Tập hợp A có (999 – 101):2 +1 = 450 phần tử. 
b/ Tập hợp B có (296 – 2 ): 3 + 1 = 99 phần tử. 
c/ Tập hợp C có (283 – 7 ):4 + 1 = 70 phần tử. 
Cho HS phát biểu tổng quát: 
- Tập hợp các số chẵn từ số chẵn a đến số chẵn b có (b – a) : 2 + 1 phần tử. 
- Tập hợp các số lẻ từ số lẻ m đến số lẻ n có (n – m) : 2 + 1 phần tử. 
- Tập hợp các số từ số c đến số d là dãy số các đều, khoảng cách giữa hai số liên tiếp của 
dãy là 3 có (d – c ): 3 + 1 phần tử. 
Bài 3: Cha mua cho em một quyển số tay dày 256 trang. Để tiện theo dõi em đánh số trang từ 
1 đến 256. HỎi em đã phải viết bao nhiêu chữ số để đánh hết cuốn sổ tay? 
Hướng dẫn: 
- Từ trang 1 đến trang 9, viết 9 số. 
TRƯỜNG THCS LÊ A PHỤ ĐẠO TOÁN 6 
LÊ THỊ THÙY DƯƠNG 3 
- Từ trang 10 đến trang 99 có 90 trang, viết 90 . 2 = 180 chữ số. 
- Từ trang 100 đến trang 256 có (256 – 100) + 1 = 157 trang, cần viết 157 . 3 = 471 số. 
Vậy em cần viết 9 + 180 + 471 = 660 số. 
Bài 4: Các số tự nhiên từ 1000 đến 10000 có bao nhiêu số có đúng 3 chữ số giống nhau. 
Hướng dẫn: 
- Số 10000 là số duy nhất có 5 chữ số, số này có hơn 3 chữ số giống nhau nên không thoả mãn 
yêu cầu của bài toán. 
Vậy số cần tìm chỉ có thể có dạng: abbb , babb , bbab , bbba với a ¹ b là cá chữ số. 
- Xét số dạng abbb , chữ số a có 9 cách chọn ( a ¹ 0) Þ có 9 cách chọn để b khác a. 
Vậy có 9 . 8 = 71 số có dạng abbb . 
Lập luận tương tự ta thấy các dạng còn lại đều có 81 số. Suy ta tất cả các số từ 1000 đến 10000 
có đúng 3 chữ số giống nhau gồm 81.4 = 324 số. 
Ngày soạn: 29/9/08 
Chủ đề 2: PHÉP CỘNG VÀ PHÉP NHÂN – PHÉP TRỪ VÀ PHÉP CHIA 
A> MỤC TIÊU 
- Ôn tập lại các tính chất của phép cộng và phép nhân, phép trừ và phép chia. 
- Rèn luyện kỹ năng vận dụng các tính chất trên vào các bài tập tính nhẩm, tính nhanh và giải 
toán một cách hợp lý. 
- Vận dụng việc tìm số phần tử của một tập hợp đã được học trước vào một số bài toán. 
- Hướng dẫn HS cách sử dụng máy tính bỏ túi. 
- Giới thiệu HS về ma phương. 
B> NỘI DUNG 
I. Ôn tập lý thuyết. 
Câu 1: Phép cộng và phép nhân có những tính chất cơ bản nào? 
Câu 2: Phép trừ và phép chia có những tính chất cơ bản nào? 
II. Bài tập 
Dạng 1: Các bài toán tính nhanh 
Bài 1: Tính tổng sau đây một cách hợp lý nhất. 
a/ 67 + 135 + 33 
b/ 277 + 113 + 323 + 87 
ĐS: a/ 235 b/ 800 
Bài 2: Tính nhanh các phép tính sau: 
a/ 8 x 17 x 125 
b/ 4 x 37 x 25 
ĐS: a/ 17000 b/ 3700 
Bài 3: Tính nhanh một cách hợp lí: 
a/ 997 + 86 
b/ 37. 38 + 62. 37 
c/ 43. 11; 67. 101; 423. 1001 
d/ 67. 99; 998. 34 
Hướng dẫn 
TRƯỜNG THCS LÊ A PHỤ ĐẠO TOÁN 6 
LÊ THỊ THÙY DƯƠNG 4 
a/ 997 + (3 + 83) = (997 + 3) + 83 = 1000 + 80 = 1083 
Sử dụng tính chất kết hợp của phép cộng. 
Nhận xét: 997 + 86 = (997 + 3) + (86 -3) = 1000 + 83 = 1083. Ta có thể thêm vào số hạng này 
đồng thời bớt đi số hạng kia với cùng một số. 
b/ 37. 38 + 62. 37 = 37.(38 + 62) = 37.100 = 3700. 
Sử dụng tính chất phân phối của phép nhân đối với phép cộng. 
c/ 43. 11 = 43.(10 + 1) = 43.10 + 43. 1 = 430 + 43 = 4373. 
67. 101= 6767 
423. 1001 = 423 423 
d/ 67. 99 = 67.(100 – 1) = 67.100 – 67 = 6700 – 67 = 6633 
998. 34 = 34. (100 – 2) = 34.100 – 34.2 = 3400 – 68 = 33 932 
Bái 4: Tính nhanh các phép tính: 
a/ 37581 – 9999 
b/ 7345 – 1998 
c/ 485321 – 99999 
d/ 7593 – 1997 
Hướng dẫn: 
a/ 37581 – 9999 = (37581 + 1 ) – (9999 + 1) = 37582 – 10000 = 89999 (cộng cùng một số vào 
số bị trừ và số trừ 
b/ 7345 – 1998 = (7345 + 2) – (1998 + 2) = 7347 – 2000 = 5347 
c/ ĐS: 385322 
d/ ĐS: 5596 
Dạng 2: Các bài toán có liên quan đến dãy số, tập hợp 
Bài 1: Tính 1 + 2 + 3 +  + 1998 + 1999 
Hướng dẫn 
- Áp dụng theo cách tích tổng của Gauss 
- Nhận xét: Tổng trên có 1999 số hạng 
Do đó 
S = 1 + 2 + 3 +  + 1998 + 1999 = (1 + 1999). 1999: 2 = 2000.1999: 2 = 1999000 
Bài 2: Tính tổng của: 
a/ Tất cả các số tự nhiên có 3 chữ số. 
b/ Tất cả các số lẻ có 3 chữ số. 
Hướng dẫn: 
a/ S1 = 100 + 101 +  + 998 + 999 
Tổng trên có (999 – 100) + 1 = 900 số hạng. Do đó 
S1= (100+999).900: 2 = 494550 
b/ S2 = 101+ 103+  + 997+ 999 
Tổng trên có (999 – 101): 2 + 1 = 450 số hạng. Do đó 
S2 = (101 + 999). 450 : 2 = 247500 
Bài 3: Tính tổng 
a/ Tất cả các số: 2, 5, 8, 11, , 296 
b/ Tất cả các số: 7, 11, 15, 19, , 283 
ĐS: a/ 14751 
 b/ 10150 
TRƯỜNG THCS LÊ A PHỤ ĐẠO TOÁN 6 
LÊ THỊ THÙY DƯƠNG 5 
Các giải tương tự như trên. Cần xác định số các số hạng trong dãy sô trên, đó là những dãy số 
cách đều. 
Bài 4: Cho dãy số: 
a/ 1, 4, 7, 10, 13, 19. 
b/ 5, 8, 11, 14, 17, 20, 23, 26, 29. 
c/ 1, 5, 9, 13, 17, 21,  
Hãy tìm công thức biểu diễn các dãy số trên. 
ĐS: 
a/ ak
 = 3k + 1 với k = 0, 1, 2, , 6 
b/ bk
 = 3k + 2 với k = 0, 1, 2, , 9 
c/ ck
 = 4k + 1 với k = 0, 1, 2,  hoặc ck = 4k + 1 với k ÎN 
Ghi chú: Các số tự nhiên lẻ là những số không chia hết cho 2, công thức biểu diễn là 2 1k + , k 
ÎN 
Các số tự nhiên chẵn là những số chia hết cho 2, công thức biểu diễn là 2k , k ÎN 
Dạng 3: Ma phương 
Cho bảng số sau: 
Các số đặt trong hình vuông có tính chất rất đặc biệt. đó là tổng các số theo hàng, cột hay 
đường chéo đều bằng nhau. Một bảng ba dòng ba cột có tính chất như vậy gọi là ma phương cấp 
3 (hình vuông kỳ diệu) 
Bài 1: Điền vào các ô còn lại để được một ma phương cấp 3 có tổng các số theo hàng, theo 
cột bằng 42. 
Hướng dẫn: 
Bài 2: Điền các số 1, 2, 3, 4, 5, 6, 7, 8, 9 vào bảng có 3 dòng 3 cột để được một ma phương 
cấp 3? 
Hướng dẫn: Ta vẽ hình 3 x 3 = 9 và đặt thêm 4o ô phụ vào giữa các cạnh hình vuông và ghi 
lại lần lượt các số vào các ô như hình bên trái. Sau đó chuyển mỗi số ở ô phụ vào hình vuông qua 
tâm hình vuông như hình bên phải. 
Bài 3: Cho bảng sau 
8 9 24 
36 12 4 
6 16 18 
9 19 5 
7 11 15 
17 3 10 
15 10 
 12 
15 10 17 
16 14 12 
11 18 13 
 1 
 4 2 
7 5 3 
 8 6 
 9 
4 9 2 
3 5 7 
8 1 6 
TRƯỜNG THCS LÊ A PHỤ ĐẠO TOÁN 6 
LÊ THỊ THÙY DƯƠNG 6 
Ta có một ma phương cấp 3 đối với phép nhân. Hãy điền tiếp vào các ô trống còn lại để có ma 
phương? 
ĐS: a = 16, b = 20, c = 4, d = 8, e = 25 
Ngày soạn: 5/10/08 
Chủ đề 3: LUỸ THỪA VỚI SỐ MŨ TỰ NHIÊN 
A> MỤC TIÊU 
- Ôn lại các kiến thức cơ bản về luỹ thừa với số mũ tự nhiên như: Lũy thừa bậc n của số a, 
nhân, chia hai luỹ thừa cùng có số,  
- Rèn luyện tính chính xác khi vận dụng các quy tắc nhân, chia hai luỹ thừa cùng cơ số 
- Tính bình phương, lập phương của một số. Giới thiệu về ghi số cho máy tính (hệ nhị phân). 
- Biết thứ tự thực hiện các phép tính, ước lượng kết quả phép tính. 
B> NỘI DUNG 
I. Ôn tập lý thuyết. 
1. Lũy thừa bậc n của số a là tích của n thừa số bằng nhau, mỗi thừa số bằng a 
{. ...na a a a= ( n ¹ 0). a gọi là cơ số, no gọi là số mũ. 
2. Nhân hai luỹ thừa cùng cơ số .m n m na a a += 
3. Chia hai luỹ thừa cùng cơ số :m n m na a a -= ( a¹ 0, m ³ n) 
Quy ước a0 = 1 ( a¹ 0) 
4. Luỹ thừa của luỹ thừa ( )nm m na a ×= 
5. Luỹ thừa một tích ( ). .m m ma b a b= 
6. Một số luỹ thừa của 10: 
- Một nghìn: 1 000 = 103 
- Một vạn: 10 000 = 104 
- Một triệu: 1 000 000 = 106 
- Một tỉ: 1 000 000 000 = 109 
Tổ ... inh thì ôtô thứ hai cách Vinh là: 
319 – 277 = 42 (km) 
Bài 4: Tổng tiền lương của bác công nhân A, B, C là 2.500.000 đ. Biết 40% tiền lương của 
bác A vằng 50% tiền lương của bác B và bằng 4/7 tiền lương của bác C. Hỏi tiền lương của mỗi 
bác là bao nhiêu? 
Hướng dẫn: 
40% = 40 2
100 5
= , 50% = 
1
2
Quy đồng tử các phân số 1 2 4, ,
2 5 7
 được: 1 4 2 4 4, ,
2 8 5 10 7
= = 
Như vậy: 4
10
 lương của bác A bằng 4
8
lương của bác B và bằng 4
7
 lương của bác C. 
TRƯỜNG THCS LÊ A PHỤ ĐẠO TOÁN 6 
LÊ THỊ THÙY DƯƠNG 58 
Suy ra, 1
10
 lương của bác A bằng 1
8
 lương của bác B và bằng 1
7
 lương của bác C. Ta có sơ đồ 
như sau: 
Lương của bác A : 2500000 : (10+8+7) x 10 = 1000000 (đ) 
Lương của bác B : 2500000 : (10+8+7) x 8 = 800000 (đ) 
Lương của bác C : 2500000 : (10+8+7) x 7 = 700000 (đ) 
============================ 
NS: ND: 
Tuần: 31 Tiết: 61-62 
Chủ đề 18: TÌM GIÁ TRỊ PHÂN SỐ CỦA MỘT SỐ CHO TRƯỚC 
Thời gian thực hiện: 2 tiết. 
A> MỤC TIÊU 
- Ôn tập lại quy tắc tìm giá trị phân số của một số cho trước 
- Biết tìm giá trị phân số của một số cho trước và ứng dụng vào việc giải các bài toán thực tế. 
- Học sinh thực hành trên máy tính cách tìm giá trị phân số của một số cho trước. 
B> NỘI DUNG 
Bài 1: Nêu quy tắc tìm giá trị phân số của một số cho trước. Áp dụng: Tìm 3
4
 của 14 
Bài 2: Tìm x, biết: 
a/ 50 25 111
100 200 4
x x
x æ ö- + =ç ÷
è ø
b/ ( ) 30 2005 . 5
100 100
x
x - = + 
Hướng dẫn: 
a/ 50 25 111
100 200 4
x x
x æ ö- + =ç ÷
è ø
Û
100 25 1
11
200 4
x x
x
+æ ö- =ç ÷
è ø
Û
200 100 25 1
11
200 4
x x x- -
= 
Û 75x = 
45
4
.200 = 2250 
Û x = 2250: 75 = 30. 
b/ ( ) 30 2005 . 5
100 100
x
x - = + 
Áp dụng tính chất phân phối của phép nhân đối với phép trừ ta có: 
30 150 20
5
100 100 100
x x
- = + 
Áp dụng mối quan hệ giữa số bị trừ, số trừ và hiệu ta có: 
TRƯỜNG THCS LÊ A PHỤ ĐẠO TOÁN 6 
LÊ THỊ THÙY DƯƠNG 59 
30 20 150
5
100 100 100
x x
= + + 
Áp dụng quan hệ giữa các số hạng của tổng và tổng ta có: 
10 650 650
.100 :10 65
100 100 100
x
x xæ ö= Þ = Þ =ç ÷
è ø
Bài 3: Trong một trường học số học sinh gái bằng 6/5 số học sinh trai. 
a/ Tính xem số HS gái bằng mấy phần số HS toàn trường. 
b/ Nếu số HS toàn trường là 1210 em thì trường đó có bao nhiêu HS trai, HS gái? 
Hướng dẫn: 
a/ Theo đề bài, trong trường đó cứ 5 phần học sinh nam thì có 6 phần học sinh nữ. Như vậy, 
nếu học sinh trong toàn trường là 11 phần thì số học sinh nữ chiếm 6 phần, nên số học sinh nữ 
bằng 6
11
 số học sinh toàn trường. 
Số học sinh nam bằng 5
11
 số học sinh toàn trường. 
b/ Nếu toàn tường có 1210 học sinh thì: 
Số học sinh nữ là: 61210 660
11
´ = (học sinh) 
Số học sinh nam là: 51210 550
11
´ = (học sinh) 
Bài 4: Một miếng đất hình chữ nhật dài 220m, chiều rộng bằng ¾ chiều lài. Người ta trông 
cây xung quanh miếng đất, biết rằng cây nọ cách cây kia 5m và 4 góc có 4 cây. Hỏi cần tất cả bao 
nhiêu cây? 
Hướng dẫn: 
Chiều rộng hình chữ nhật: 3220. 165
4
= (m) 
Chu vi hình chữ nhật: ( )220 165 .2 770+ = (m) 
Số cây cần thiết là: 770: 5 = 154 (cây) 
Bài 5: Ba lớp 6 có 102 học sinh. Số HS lớp A bằng 8/9 số HS lớp B. Số HS lớp C bằng 17/16 
số HS lớp A. Hỏi mỗi lớp có bao nhiêu học sinh? 
Hướng dẫn: 
Số học sinh lớp 6B bằng 9
8
 học sinh lớp 6A (hay bằng 18
16
) 
Số học sinh lớp 6C bằng 17
16
 học sinh lớp 6A 
Tổng số phần của 3 lớp: 18+16+17 = 51 (phần) 
Số học sinh lớp 6A là: (102 : 51) . 16 = 32 (học sinh) 
Số học sinh lớp 6B là: (102 : 51) . 18 = 36 (học sinh) 
Số học sinh lớp 6C là: (102 : 51) . 17 = 34 (học sinh) 
Bài 6: 1/ Giữ nguyên tử số, hãy thay đổi mẫu số của phân số 275
289
 soa cho giá trị của nó giảm 
đi 7
24
 giá trị của nó. Mẫu số mới là bao nhiêu? 
Hướng dẫn 
TRƯỜNG THCS LÊ A PHỤ ĐẠO TOÁN 6 
LÊ THỊ THÙY DƯƠNG 60 
Gọi mẫu số phải tìm là x, theo đề bài ta có: 
275 275 7 275 275 7 275 17 275
. 1 .
289 24 289 289 24 289 24 408x
æ ö= - = - = =ç ÷
è ø
Vậy x = 275
408
Bài 7: Ba tổ công nhân trồng được tất cả 286 cây ở công viên. Số cây tổ 1 trồng được bằng 
9
10
 số cây tổ 2 và số cây tổ 3 trồng được bằng 24
25
số cây tổ 2. Hỏi mỗi tổ trồng được bao nhiêu 
cây? 
Hướng dẫn: 
90 cây; 100 cây; 96 cây. 
======================== 
NS: ND: 
Tuần: 32 Tiết: 63-64 
Chủ đề 19: TÌM MỘT SỐ BIẾT GIÁ TRỊ PHÂN SỐ CỦA NÓ 
Thời gian thực hiện: 2 tiết. 
A> MỤC TIÊU 
- HS nhận biết và hiểu quy tắc tìm một số biết giá trị một phan số của nó 
- Có kĩ năng vận dụng quy tắc đó, ứng dụng vào việc giải các bài toán thực tế. 
- Học sinh thực hành trên máy tính cách tìm giá trị phân số của một số cho trước. 
B> NỘI DUNG 
Bài tập 
Bài 1: 1/ Một lớp học có số HS nữ bằng 5
3
 số HS nam. Nếu 10 HS nam chưa vào lớp thì số 
HS nữ gấp 7 lần số HS nam. Tìm số HS nam và nữ của lớp đó. 
2/ Trong giờ ra chơi số HS ở ngoài bằng 1/5 số HS trong lớp. Sau khi 2 học sinh vào lớp thì số 
số HS ở ngoài bừng 1/7 số HS ở trong lớp. Hỏi lớp có bao nhiêu HS? 
Hướng dẫn: 
1/ Số HS nam bằng 3
5
 số HS nữ, nên số HS nam bằng 3
8
 số HS cả lớp. 
Khi 10 HS nam chưa vào lớp thì số HS nam bằng 1
7
 số HS nữ tức bằng 1
8
 số HS cả lớp. 
Vậy 10 HS biểu thị 3
8
 - 1
8
 = 1
4
 (HS cả lớp) 
Nên số HS cả lớp là: 10 : 1
4
= 40 (HS) 
Số HS nam là : 40. 3
8
 = 15 (HS) 
TRƯỜNG THCS LÊ A PHỤ ĐẠO TOÁN 6 
LÊ THỊ THÙY DƯƠNG 61 
Số HS nữ là : 40. 5
8
 = 25 (HS) 
2/ Lúc đầu số HS ra ngoài bằng 1
5
 số HS trong lớp, tức số HS ra ngoài bằng 1
6
 số HS trong 
lớp. 
Sau khi 2 em vào lớp thì số HS ở ngoài bằng 1
8
 số HS của lớp. Vậy 2 HS biểu thị 
1
6
- 1
8
 = 2
48
 (số HS của lớp) 
Vậy số HS của lớp là: 2 : 2
48
 = 48 (HS) 
Bài 2: 1/ Ba tấm vải có tất cả 542m. Nết cắt tấm thứ nhất 1
7
, tấm thứ hai 3
14
, tấm thứ ba bằng 
2
5
 chiều dài của nó thì chiều dài còn lại của ba tấm bằng nhau. Hỏi mỗi tấm vải bao nhiêu mét? 
Hướng dẫn: 
Ngày thứ hai hợp tác xã gặt được: 
5 7 13 7 7
1 . .
18 13 18 13 18
æ ö- = =ç ÷
è ø
 (diện tích lúa) 
Diện tích còn lại sau ngày thứ hai: 
15 7 1
1
18 18 3
æ ö- + =ç ÷
è ø
 (diện tích lúa) 
1
3
 diện tích lúa bằng 30,6 a. Vậy trà lúa sớm hợp tác xã đã gặt là: 
30,6 : 
1
3
 = 91,8 (a) 
Bài 3: Một người có xoài đem bán. Sau khi án được 2/5 số xoài và 1 trái thì còn lại 50 trái 
xoài. Hỏi lúc đầu người bán có bao nhiêu trái xoài 
Hướng dẫn 
Cách 1: Số xoài lức đầu chia 5 phần thì đã bắn 2 phần và 1 trái. Như vậy số xoài còn lại là 3 
phần bớt 1 trsi tức là: 3 phần bằng 51 trái. 
Số xoài đã có là 5 .5 85
31
= trái 
Cách 2: Gọi số xoài đem bán có a trái. Số xoài đã bán là 2 1
5
a + 
Số xoài còn lại bằng: 
2
( 1) 50 85
5
a a a- + = Þ = (trái) 
================== 
NS: ND: 
Tuần: 33 Tiết: 65-66 
Chủ đề 20: TÌM TỈ SỐ CỦA HAI SỐ 
TRƯỜNG THCS LÊ A PHỤ ĐẠO TOÁN 6 
LÊ THỊ THÙY DƯƠNG 62 
Thời gian thực hiện: 2 tiết. 
A> MỤC TIÊU 
- HS hiểu được ý nghĩa và biết cách tìm tỉ số của hai số, tỉ số phần trăm, tỉ lệ xích. 
- Có kĩ năng tìm tỉ số, tỉ số phần trăn và tỉ lệ xích. 
- Có ý thức áp dụng các kiến thức và kĩ năng nói teen vào việc giải một số bài toán thực 
tiễn. 
B> NỘI DUNG 
Bài tập 
Bài 1: 1/ Một ô tô đi từ A về phía B, một xe máy đi từ B về phía A. Hai xe khởi hành cùng 
một lúc cho đến khi gặp nhau thì quãng đường ôtô đi được lớn hơn quãng đường của xe máy đi là 
50km. Biết 30% quãng đường ô tô đi được bằng 45% quãng đường xe máy đi được. Hỏi quãng 
đường mỗi xe đi được bằng mấy phần trăm quãng đường AB. 
2/ Một ô tô khách chạy với tốc độ 45 km/h từ Hà Nội về Thái Sơn. Sau một thời gian một ôtô 
du lịch cũng xuất phát từ Hà Nội đuổi theo ô tô khách với vận tốc 60 km/h. Dự định chúng gặp 
nhau tại thị xã Thái Bình cách Thái Sơn 10 km. Hỏi quãng đường Hà Nội – Thái Sơn? 
Hướng dẫn: 
1/ 30% = 
3 9
10 30
= ; 45% = 
9
20
9
30
 quãng đường ôtô đi được bằng 9
20
 quãng đường xe máy đi được. 
Suy ra, 1
30
 quãng đường ôtô đi được bằng 1
20
 quãng đường xe máy đi được. 
Quãng đường ôtô đi được: 50: (30 – 20) x 30 = 150 (km) 
Quãng đường xe máy đi được: 50: (30 – 20) x 20 = 100 (km) 
2/ Quãng đường đi từ N đến Thái Bình dài là: 40 – 10 = 30 (km) 
Thời gian ôtô du lịch đi quãng đường N đến Thái Bình là: 30 : 60 = 1
2
 (h) 
Trong thời gian đó ôtô khách chạy quãng đường NC là: 40. 1
2
= 20 (km) 
Tỉ số vận tốc của xe khách trước và sau khi thay đổi là: 40 9
45 8
= 
Tỉ số này chính lầ tỉ số quãng đường M đến Thái Bình và M đến C nên: 
9
8
M TB
MC
®
= 
M®TB – MC = 
9
8
MC – MC = 1
8
MC 
Vậy quãng đường MC là: 10 : 1
8
 = 80 (km) 
Vì M®TS = 1 - 
3
13
 = 10
13
 (H®TS) 
Vậy khoảng cách Hà Nội đến Thái Sơn (HN®TS) dài là: 
100 : 10
13
 = 100. 13
10
 = 130 (km) 
TRƯỜNG THCS LÊ A PHỤ ĐẠO TOÁN 6 
LÊ THỊ THÙY DƯƠNG 63 
Bài 2: . 1/ Nhà em có 60 kg gạo đựng trong hai thùng. Nếu lấy 25% số gạo của thùng thứ nhất 
chuyển sang thùng thứ hai thì số gạo của hai thùng bằng nhau. Hỏi số gạo của mỗi thùng là bao 
nhiêu kg? 
Hướng dẫn: 
Nếu lấy số gạo thùng thứ nhất làm đơn vị thì số gạo của thùng thứ hai bằng 1
2
(đơn vị) (do 
25% = 1
4
) và 3
4
 số gạo của thùng thứ nhất bằng số gạo của thùng thứ hai + 1
4
 số gạo của thùng 
thứ nhất. 
Vậy số gạo của hai thùng là: 1 31
2 2
+ = (đơn vị) 
3
2
đơn vị bằng 60 kg. Vậy số gạo của thùng thứ nhất là: 3 260 : 60. 40
2 3
= = (kg) 
Số gạo của thùng thứ hai là: 60 – 40 = 20 (kg) 
Bài 3: Một đội máy cày ngày thứ nhất cày được 50% ánh đồng và thêm 3 ha nữa. Ngày thứ 
hai cày được 25% phần còn lại của cánh đồng và 9 ha cuối cùng. Hỏi diện tích cánh đồng đó là 
bao nhiêu ha? 
2/ Nước biển chưa 6% muối (về khối lượng). Hỏi phải thêm bao nhiêu kg nước thường vào 50 
kg nước biển để cho hỗn hợp có 3% muối? 
Hướng dẫn: 
1/ Ngày thứ hai cày được: 39 : 12
4
= (ha) 
Diện tích cánh đồng đó là: ( ) 5012 3 : 30
100
+ = (ha) 
2/ Lượng muối chứa trong 50kg nước biển: 50 6 3
100
´
= (kg) 
Lượng nước thường cần phải pha vào 50kg nước biển để được hỗn hợp cho 3% muối: 
100 – 50 = 50 (kg) 
Bài4: Trên một bản đồ có tỉ lệ xích là 1: 500000. Hãy tìm: 
a/ Khoảng cách trên thực tế của hai điểm trên bản đồ cách nhau 125 milimet. 
b/ Khoảng cách trên bản đồ của hai thành phố cách nhau 350 km (trên thực tế). 
Hướng dẫn 
a/ Khảng cách trên thực tế của hai điểm là: 
125.500000 (mm) = 125500 (m) = 62.5 (km). 
b/ Khảng cách giữa hai thành phố trên bản đồ là: 
350 km: 500000 = 350000:500000 (m) = 0.7 m 
============== 
TRƯỜNG THCS LÊ A PHỤ ĐẠO TOÁN 6 
LÊ THỊ THÙY DƯƠNG 64 

Tài liệu đính kèm:

  • pdfGIAO AN DAY THEM TOAN 6.pdf