Giáo án dạy thêm Toán học Lớp 6 - Học kỳ II năm học 2011-2012

Giáo án dạy thêm Toán học Lớp 6 - Học kỳ II năm học 2011-2012

A> MỤC TIÊU

- Ôn tập lại khái niệm về bội và ước của một số nguyên và tính chất của nó.

- Biết tìm bội và ước của một số nguyên.

- Thực hiện một số bài tập tổng hợp.

B> NỘI DUNG

I. Câu hỏi ôn tập lí thuyết:

Câu 1: Nhắc lại khái niệm bội và ước của một số nguyên.

Câu 2: Nêu tính chất bội và ước của một số nguyên.

Câu 3: Em có nhận xét gì xề bội và ước của các số 0, 1, -1?

II. Bài tập

Dạng 1:

Bài 1: Tìm tất cả các ước của 5, 9, 8, -13, 1, -8

Hướng dẫn

Ư(5) = -5, -1, 1, 5

Ư(9) = -9, -3, -1, 1, 3, 9

Ư(8) = -8, -4, -2, -1, 1, 2, 4, 8

Ư(13) = -13, -1, 1, 13

Ư(1) = -1, 1

Ư(-8) = -8, -4, -2, -1, 1, 2, 4, 8

262. Viết biểu thức xác định:

a/ Các bội của 5, 7, 11

b/ Tất cả các số chẵn

c/ Tất cả các số lẻ

Hướng dẫn

a/ Bội của 5 là 5k, kZ

Bội của 7 là 7m, mZ

Bội của 11 là 11n, nZ

b/ 2k, kZ

c/ 2k 1, kZ

Bài 2: Tìm các số nguyên a biết:

a/ a + 2 là ước của 7

b/ 2a là ước của -10.

c/ 2a + 1 là ước của 12

Hướng dẫn

a/ Các ước của 7 là 1, 7, -1, -7 do đó:

 +) a + 2 = 1 a = -1

 +) a + 2 = 7 a = 5

 +) a + 2 = -1 a = -3

 +) a + 2 = -7 a = -9

 

doc 37 trang Người đăng lananh572 Lượt xem 480Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án dạy thêm Toán học Lớp 6 - Học kỳ II năm học 2011-2012", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Học kỳ II
Ngày soạn : 20/12/2011
Ngày dạy :
Bài 1: quy tắc chuyển vế- NHÂN HAI Số NGUYÊN 
A. MụC TIÊU
- ÔN tập HS về phép nhân hai số nguyên cùng dấu, khác dấu và tính chất của nhân các số nguyên, quy tắc chuyển vế
- Rèn luyện kỹ năng tính toán hợp lý, biết cách chuyển vế, quy tắc bỏ dấu ngoặc.
B. NộI DUNG
I. Câu hỏi ôn tập lí thuyết:
Câu 1: Phát biểu quy tắc nhân hai số nguyên khác dấu. áp dụng: Tính 27. (-2)
Câu 2: Hãy lập bảng cách nhận biết dấu của tích?
Câu 3: Phép nhân có những tính chất cơ bản nào?
II. Bài tập
Bài 1: 1/ Điền dấu ( >,<,=) thích hợp vào ô trống:
a/ (- 15) . (-2) c 0
b/ (- 3) . 7 c 0
c/ (- 18) . (- 7) c 7.18
d/ (-5) . (- 1) c 8 . (-2) 
2/ Điền vào ô trống
a
- 4
3
0
9
b
- 7
40
- 12
- 11
ab
32
- 40
- 36
44
3/ Điền số thích hợp vào ô trống:
x
0
- 1
2
6
- 7
x3
- 8
64
- 125
Hướng dẫn
1/. a/ 
b/ 
c/ 
d/ 
a
- 4
3
- 1
0
9
- 4 
b
- 8
- 7
40
- 12
- 4
- 11
ab
32
- 21
- 40
0
- 36
44
Bài 2: . 1/Viết mỗi số sau thành tích của hai số nguyên khác dấu:
a/ -13
b/ - 15
c/ - 27
Hướng dẫn:
a/ - 13 = 13 .(-1) = (-13) . 1
b/ - 15 = 3. (- 5) = (-3) . 5
c/ -27 = 9. (-3) = (-3) .9
Bài 3: 1/Tìm x biết: 
a/ 11x = 55
b/ 12x = 144
c/ -3x = -12
d/ 0x = 4
e/ 2x = 6
2/ Tìm x biết:
a/ (x+5) . (x – 4) = 0
b/ (x – 1) . (x - 3) = 0
c/ (3 – x) . ( x – 3) = 0
d/ x(x + 1) = 0
Hướng dẫn
1.a/ x = 5
b/ x = 12
c/ x = 4
d/ không có giá trị nào của x để 0x = 4
e/ x= 3
2. Ta có a.b = 0 a = 0 hoặc b = 0
a/ (x+5) . (x – 4) = 0 (x+5) = 0 hoặc (x – 4) = 0
x = 5 hoặc x = 4
b/ (x – 1) . (x - 3) = 0 (x – 1) = 0 hoặc (x - 3) = 0
x = 1 hoặc x = 3
c/ (3 – x) . ( x – 3) = 0 (3 – x) = 0 hoặc ( x – 3) = 0
x = 3 ( trường hợp này ta nói phương trình có nghiệm kép là x = 3
d/ x(x + 1) = 0 x = 0 hoặc x = - 1
Bài 4: Tính
a/ (-37 – 17). (-9) + 35. (-9 – 11)
b/ (-25)(75 – 45) – 75(45 – 25)
Bài 5: Tính giá trị của biểu thức:
a/ A = 5a3b4 với a = - 1, b = 1
b/ B = 9a5b2 với a = -1, b = 2
Bài 6: . Tính giá trị của biểu thức:
a/ ax + ay + bx + by biết a + b = -2, x + y = 17
b/ ax - ay + bx - by biết a + b = -7, x - y = -1
Bài 7: Tính một cách hợp lí giá trị của biểu thức
a/ A = (-8).25.(-2). 4. (-5).125
b/ B = 19.25 + 9.95 + 19.30
Hướng dẫn:
a/ A = -1000000
b/ Cần chú ý 95 = 5.19 	
áp dụng tính chất giao hoán, kết hợp để tính, ta được B = 1900
Bài 2. BộI Và ƯớC CủA MộT Số NGUYÊN
A> MụC TIÊU
- Ôn tập lại khái niệm về bội và ước của một số nguyên và tính chất của nó.
- Biết tìm bội và ước của một số nguyên.
- Thực hiện một số bài tập tổng hợp.
B> NộI DUNG
I. Câu hỏi ôn tập lí thuyết:
Câu 1: Nhắc lại khái niệm bội và ước của một số nguyên.
Câu 2: Nêu tính chất bội và ước của một số nguyên.
Câu 3: Em có nhận xét gì xề bội và ước của các số 0, 1, -1?
II. Bài tập
Dạng 1:
Bài 1: Tìm tất cả các ước của 5, 9, 8, -13, 1, -8
Hướng dẫn
Ư(5) = -5, -1, 1, 5
Ư(9) = -9, -3, -1, 1, 3, 9
Ư(8) = -8, -4, -2, -1, 1, 2, 4, 8
Ư(13) = -13, -1, 1, 13
Ư(1) = -1, 1
Ư(-8) = -8, -4, -2, -1, 1, 2, 4, 8
262. Viết biểu thức xác định:
a/ Các bội của 5, 7, 11
b/ Tất cả các số chẵn 
c/ Tất cả các số lẻ
Hướng dẫn
a/ Bội của 5 là 5k, kZ
Bội của 7 là 7m, mZ 
Bội của 11 là 11n, nZ
b/ 2k, kZ
c/ 2k 1, kZ
Bài 2: Tìm các số nguyên a biết:
a/ a + 2 là ước của 7
b/ 2a là ước của -10.
c/ 2a + 1 là ước của 12
Hướng dẫn
a/ Các ước của 7 là 1, 7, -1, -7 do đó:
 +) a + 2 = 1 a = -1
 +) a + 2 = 7 a = 5
 +) a + 2 = -1 a = -3
 +) a + 2 = -7 a = -9
b/ Các ước của 10 là 1, 2, 5, 10, mà 2a là số chẵn do đó: 2a = 2, 2a = 10
2a = 2 a = 1
2a = -2 a = -1
2a = 10 a = 5
2a = -10 a = -5
c/ Các ước của 12 là 1, 2, 3,6, 12, mà 2a + 1 là số lẻ do đó: 2a +1 = 1, 2a + 1 = 3
Suy ra a = 0, -1, 1, -2
Bài 3: Chứng minh rằng nếu a Z thì:
a/ M = a(a + 2) – a(a – 5) – 7 là bội của 7.
b/ N = (a – 2)(a + 3) – (a – 3)(a + 2) là số chẵn.
Hướng dẫn
a/ M= a(a + 2) – a(a - 5) – 7
 = a2 + 2a – a2 + 5a – 7
 = 7a – 7 = 7 (a – 1) là bội của 7.
b/ N= (a – 2) (a + 3) – (a – 3) (a + 2)
 = (a2 + 3a – 2a – 6) – (a2 + 2a – 3a – 6)
 = a2 + a – 6 – a2 + a + 6 = 2a là số chẵn với aZ.
Bài 4: Cho các số nguyên a = 12 và b = -18
a/ Tìm các ước của a, các ước của b.
b/ Tìm các số nguyên vừa là ước của a vừa là ước của b/
Hướng dẫn
a/ Trước hết ta tìm các ước số của a là số tự nhiên
Ta có: 12 = 22. 3
Các ước tự nhiên của 12 là:
Ư(12) = {1, 2, 22, 3, 2.3, 22. 3} = {1, 2, 4, 3, 6, 12}
Từ đó tìm được các ước của 12 là: 1, 2, 3, 6, 12
Tương tự ta tìm các ước của -18.
Ta có |-18| = 18 = 2. 33 
Các ước tự nhiên của |-18| là 1, 2, 3, 9, 6, 18
Từ đó tìm được các ước của 18 là: 1, 2, 3, 6, 9 18
b/ Các ước số chung của 12 và 18 là: 1, 2, 3, 6
Ghi chú: Số c vừa là ước của a, vừa là ước của b gọi là ước chung của a và b.
Dạng 2: Bài tập ôn tập chung
Bài 1: Trong những câu sau câu nào đúng, câu nào sai:
a/ Tổng hai số nguyên âm là 1 số nguyên âm.
b/ Hiệu hai số nguyên âm là một số nguyên âm.
c/ Tích hai số nguyên là 1 số nguyên dương
d/ Tích của hai số nguyên âm là 1 số nguyên dương.
Hướng dẫn 
a/ Đúng
b/ Sai, chẳng hạn (-4) – (-7) = (-4) + 7 = 3
c/ Sai, chẳng hạn (-4).3 = -12
d/ Đúng
Bài 2: Tính các tổng sau:
a/ [25 + (-15)] + (-29);
b/ 512 – (-88) – 400 – 125;
c/ -(310) + (-210) – 907 + 107;
d/ 2004 – 1975 –2000 + 2005
Hướng dẫn a/ -19
b/ 75
c/ -700
d/ 34
274. Tìm tổng các số nguyên x biết:
a/ 
b/ 
Hướng dẫn
a/ 
Từ đó ta tính được tổng này có giá trị bằng 0
b/ Tổng các số nguyên x bằng 
Bài 3. Tính giá strị của biểu thức
A = -1500 - {53. 23 – 11.[72 – 5.23 + 8(112 – 121)]}. (-2)
Hướng dẫn
A = 302
GV: Để làm bài tập trên ta sử dụng kiến thức nào đã học?
HS: Ta sử dụng dấu hiệu chia hết cho 2; 3; 5; và 9 để làm bài
GV: Để số chia hết cho 2 thì x,y phải thay các số nào ?
HS: y nhận các gía trị 0; 2; 4; 6; 8, còn x tuỳ ý nhận các giá trị từ 0 đến 9
GV: Vậy ta có thể thay được bao nhiêu số chia hết cho 2?
HS: Ta có thể thay được 9 . 5 = 45 số
Tương tự cho học sinh làm các phần còn lại 
Gợi ý e, chia hết cho 45 thì phải chia hết cho 5 và 9 
GV: như vậy bài tập đưa về tìm x , y để số chia hết cho 9; 5
E. Hướng dẫn về nhà
Ôn tập lại lý thuyết và các bài tập trắc nghiệm ở các tuần trước
F. Rút kinh nghiệm
Bài 3: PHÂN Số - PHÂN Số BằNG NHAU
A> MụC TIÊU
- Học ôn tập khái niệm phân số, định nghĩa hai phân số bằnh nhau.
- Luyện tập viết phân số theo điều kiện cho trước, tìm hai phân số bằng nhau
- Rèn luyện kỹ năng tính toán. 
B> NộI DUNG
Bài 1: Định nghĩa hai phân số bằng nhau. Cho VD?
Bài 2: Dùng hai trong ba số sau 2, 3, 5 để viết thành phân số (tử số và mấu số khác nhau)
Hướng dẫn
Có các phân số: 
Bài 3: 1/ Số nguyên a phải có điều kiện gì để ta có phân số?
a/ 
b/ 
2/ Số nguyên a phải có điều kiện gì để các phân số sau là số nguyên:
a/ 
b/ 
3/ Tìm số nguyên x để các phân số sau là số nguyên:
a/ 
b/ 
Hướng dẫn
1/ a/ 	b/ 
2/ a/ Z khi và chỉ khi a + 1 = 3k (k Z). Vậy a = 3k – 1 (k Z)
b/ Z khi và chỉ khi a - 2 = 5k (k Z). Vậy a = 5k +2 (k Z)
3/ Z khi và chỉ khi x – 1 là ước của 13.
Các ước của 13 là 1; -1; 13; -13
x - 1
-1
1
-13
13
x
0
2
-12
14
Suy ra: 
b/ = Z khi và chỉ khi x – 2 là ước của 5.
x - 2
-1
1
-5
5
x
1
3
-3
7
Bài 4: Tìm x biết:
a/ 
b/ 
c/ 
d/ 
e/ 
f/ 
Hướng dẫn
a/ 
b/ 
c/ 
d/ 
e/ 
f/ 
Bài 5: a/ Chứng minh rằng thì 
2/ Tìm x và y biết và x + y = 16
Hướng dẫn
a/ Ta có 
Suy ra: 
b/ Ta có: 
Suy ra x = 10, y = 6
Bài 6: Cho , chứng minh rằng 
Hướng dẫn
áp dụng kết quả chứng minh trên ta có
===================
Bài 4. TíNH CHấT CƠ BảN CủA PHÂN Số - RúT GọN PHÂN Số
.
A> MụC TIÊU
- HS được ôn tập về tính chất cơ bản của phân số
- Luyện tập kỹ năng vận dụng kiến thức cơ bản của phân số để thực hiện các bài tập rút gọn, chứng minh. Biết tìm phân số tối giản.
- Rèn luyện kỹ năng tính toán hợp lí.
B> NộI DUNG
I. Câu hỏi ôn tập lý thuyết
Câu 1: Hãy nêu tính chất cơ bản của phân số.
Câu 2: Nêu cách rút gọn phân số. áp dụng rút gọn phân số 
Câu 3: Thế nào là phân số tối giản? Cho VD 2 phân số tối giản, 2 phân số chưa tối giản.
II. Bài tập
Bài 1: 1/ Chứng tỏ rằng các phân số sau đây bằng nhau:
a/ ; và 
b/ ; và 
2/ Tìm phân số bằng phân số và biết rằng hiệu của mẫu và tử của nó bằng 6.
Hướng dẫn
1/ a/ Ta có: 
 = 
 = 
b/ Tương tự
2/ Gọi phân số cần tìm có dạng (x-6), theo đề bài thì =
Từ đó suy ra x = 33, phân số cần tìm là 
Bài 2: Điền số thích hợp vào ô vuông
a/ 
b/ 
Hướng dẫn
a/ 
b/ 
Bài 3. Giải thích vì sao các phân số sau bằng nhau:
a/ ;
b/ 
Hướng dẫn
a/ ;
b/ HS giải tương tự
Bài 4. Rút gọn các phân số sau:
Hướng dẫn
Rút gọn các phân số sau:
a/ 
b/ 
c/ 
Hướng dẫn
a/ 
b/ 
c/ 
Bài 5. Rút gọn
a/ 
b/ 
c/ 
d/ 
Hướng dẫn
a/ 
c/ 
Bài 6. Tổng của tử và mẫu của phân số bằng 4812. Sau khi rút gọn phân số đó ta được phân số . Hãy tìm phân số chưa rút gọn.
Hướng dẫn
Tổng số phần bằng nhau là 12
Tổng của tử và mẫu bằng 4812
Do đó: tử số bằng 4811:12.5 = 2005
Mẫu số bằng 4812:12.7 = 2807.
Vậy phân số cần tìm là 
Bài 7. Mẫu số của một phân số lớn hơn tử số 14 đơn vị. Sau khi rút gọn phân số đó ta được . Hãy tìm phân số ban đầu.
Hiệu số phần của mẫu và tử là 1000 – 993 = 7
Do đó tử số là (14:7).993 = 1986
Mẫu số là (14:7).1000 = 2000
Vạy phân số ban đầu là 
Bài 8: a/ Với a là số nguyên nào thì phân số là tối giản.
b/ Với b là số nguyên nào thì phân số là tối giản.
c/ Chứng tỏ rằng là phân số tối giản
Hướng dẫn
a/ Ta có là phân số tối giản khi a là số nguyên khác 2 và 37
b/ là phân số tối giản khi b là số nguyên khác 3 và 5
c/ Ta có ƯCLN(3n + 1; 3n) = ƯCLN(3n + 1 – 3n; 3n) = ƯCLN(1; 3n) = 1
Vậy là phân số tối giản (vì tử và mẫu là hai số nguyên tố cùng nhau)
Bài 5: QUY ĐồNG MẫU PHÂN Số , SO SáNH PHÂN Số CộNG, TRừ PHÂN Số
A> MụC TIÊU
- Ôn tập về các bước quy đồng mẫu hai hay nhiều phân số.
- Ôn tập về so sánh hai phân số
- Rèn luyện HS ý thức làm việc theo quy trình, thực hiện đúng, đầy đủ các bước quy đồng, rèn kỹ năng tính toán, rút gọn và so sánh phân số.
- Ôn tập về phép cộng, trừ hai phân số cùng mẫu, không cùng mẫu.
- Rèn luyện kỹ năng cộng, trừ phân số. Biết áp dụng các tính chất của phép cộng, trừ phân số vào việc giải bài tập.
- áp dụng vào việc giải các bài tập thực tế
Bài 1: a/ Quy đồng mẫu các phân số sau:
b/ Rút gọn rồi quy đồng mẫu các phân số sau:
Hướng dẫn
a/ 38 = 2.19; 12 = 22.3
BCNN(2, 3, 38, 12) = 22. 3. 19 = 228
b/ 
BCNN(10, 40, 200) = 23. 52 = 200
Bài 2: Các phân số sau có bằng nhau hay không?
 a/ và ;
b/ và 
c/ và 
d/ và 
Hướng dẫn
- Có thể so sánh  ... rong tam giác ABC. Vẽ tia AO cắt Bc tại H, tia BO cắt AC tại I, tia CO cắt tia AB tại K. trong hình đó có bao nhiêu tam giác?
Giải: (học sinh tự giải).
Bài 4: 
Học sinh lên bảng thực hiện.
Bài 4: 
a) Vẽ tam giác ABC biết: BC = 3.5cm; AB = 2cm; AC = 3cm.
b) Vẽ tiếp tam giác ADE biết D thuộc tia đối của tia AB và AD = 1cm; E thuộc tia đối của tia AC và AE =1.5cm.
c) Hai tia BE và CD cắt nhau tại O. Dùng compa để kiểm tra xem E và D theo thứ tự có phải là trung điểm của OB và OC không ?
Giải: 
Bài 8. HỗN Số. Số THậP PHÂN. PHầN TRĂM
A> MụC TIÊU
- Ôn tập về hỗn số, số thập phân, phân số thập phân, phần trăm
- Học sinh biết viết một phân số dưới dạng hỗn số và ngược lại.
- Làm quen với các bài toán thực tế
B> NộI DUNG
Bài tập
Bài 1: 1/ Viết các phân số sau đây dưới dạng hỗn số:
2/ Viết các hỗn số sau đây dưới dạng phân số:
3/ So sánh các hỗn số sau:
 và ; 	 và ; 	 và 
Hướng dẫn:
1/ 
2/ 
3/ Muốn so sánh hai hỗn số có hai cách:
- Viết các hỗn số dưới dạng phân số, hỗn số có phân số lớn hơn thì lớn hơn
- So sánh hai phần nguyên:
+ Hỗn số nào có phần nguyên lớn hơn thì lớn hơn.
+ Nếu hai phần nguyên bằng nhau thì so sánh hai phân số đi kèm, hỗn số có phân số đi kèm lớn hơn thì lớn hơn. ở bài này ta sử dụng cách hai thì ngắn gọn hơn:
( do 4 > 3), (do , hai phân số có cùng tử số phân số nsò có mssũ nhỏ hơn thì lớn hơn).
Bài 2: Tìm 5 phân số có mẫu là 5, lớn hơn 1/5 và nhỏ hơn .
Hướng dẫn:
Bài 3: Hai ô tô cùng xuất phát từ Hà Nội đi Vinh. Ô tô thứ nhất đo từ 4 giờ 10 phút, ô tô thứ hai đia từ lúc 5 giờ 15 phút. 
a/ Lúc giờ cùng ngày hai ôtô cách nhau bao nhiêu km? Biết rằng vận tốc của ôtô thứ nhất là 35 km/h. Vận tốc của ôtô thứ hai là km/h.
b/ Khi ôtô thứ nhất đến Vinh thì ôtô thứ hai cách Vinh bao nhiêu Km? Biết rằng Hà Nội cách Vinh 319 km.
Hướng dẫn:
a/ Thời gian ô tô thứ nhất đã đi:
(giờ)
Quãng đường ô tô thứ nhất đã đi được:
(km)
Thời gian ô tô thứ hai đã đi:
 (giờ)
Quãng đường ô tô thứ hai đã đi:
 (km)
Lúc 11 giờ 30 phút cùng ngày hai ô tô cách nhau:
 (km)
b/ Thời gian ô tô thứ nhất đến Vinh là:
 (giờ)
Ôtô đến Vinh vào lúc:
 (giờ)
Khi ôtô thứ nhất đến Vinh thì thời gian ôtô thứ hai đã đi:
 (giờ)
Quãng đường mà ôtô thứ hai đi được:
 (km)
Vậy ôtô thứ nhất đến Vinh thì ôtô thứ hai cách Vinh là:
319 – 277 = 42 (km)
Bài 4: Tổng tiền lương của bác công nhân A, B, C là 2.500.000 đ. Biết 40% tiền lương của bác A vằng 50% tiền lương của bác B và bằng 4/7 tiền lương của bác C. Hỏi tiền lương của mỗi bác là bao nhiêu?
Hướng dẫn:
40% = , 50% = 
Quy đồng tử các phân số được:
Như vậy: lương của bác A bằng lương của bác B và bằng lương của bác C.
Suy ra, lương của bác A bằng lương của bác B và bằng lương của bác C. Ta có sơ đồ như sau:
Lương của bác A : 2500000 : (10+8+7) x 10 = 1000000 (đ)
Lương của bác B : 2500000 : (10+8+7) x 8 = 800000 (đ)
Lương của bác C : 2500000 : (10+8+7) x 7 = 700000 (đ)
============================
Bài 9 . TìM GIá TRị PHÂN Số CủA MộT Số CHO TRƯớC,TìM MộT Số BIếT GIá TRị PHÂN Số CủA Nó
A> MụC TIÊU
- Ôn tập lại quy tắc tìm giá trị phân số của một số cho trước
- Biết tìm giá trị phân số của một số cho trước và ứng dụng vào việc giải các bài toán thực tế.
- Học sinh thực hành trên máy tính cách tìm giá trị phân số của một số cho trước.
- HS nhận biết và hiểu quy tắc tìm một số biết giá trị một phan số của nó
- Có kĩ năng vận dụng quy tắc đó, ứng dụng vào việc giải các bài toán thực tế.
- Học sinh thực hành trên máy tính cách tìm giá trị phân số của một số cho trước.
B> NộI DUNG
Bài 1: Nêu quy tắc tìm giá trị phân số của một số cho trước. áp dụng: Tìm của 14
Bài 2: Tìm x, biết:
a/ 
b/ 
Hướng dẫn:
a/ 
75x = .200 = 2250
x = 2250: 75 = 30.
b/ 
áp dụng tính chất phân phối của phép nhân đối với phép trừ ta có:
áp dụng mối quan hệ giữa số bị trừ, số trừ và hiệu ta có:
áp dụng quan hệ giữa các số hạng của tổng và tổng ta có:
Bài 3: Trong một trường học số học sinh gái bằng 6/5 số học sinh trai.
a/ Tính xem số HS gái bằng mấy phần số HS toàn trường.
b/ Nếu số HS toàn trường là 1210 em thì trường đó có bao nhiêu HS trai, HS gái?
Hướng dẫn:
a/ Theo đề bài, trong trường đó cứ 5 phần học sinh nam thì có 6 phần học sinh nữ. Như vậy, nếu học sinh trong toàn trường là 11 phần thì số học sinh nữ chiếm 6 phần, nên số học sinh nữ bằng số học sinh toàn trường.
Số học sinh nam bằng số học sinh toàn trường.
b/ Nếu toàn tường có 1210 học sinh thì:
Số học sinh nữ là: (học sinh)
Số học sinh nam là: (học sinh)
Bài 4: Một miếng đất hình chữ nhật dài 220m, chiều rộng bằng # chiều lài. Người ta trông cây xung quanh miếng đất, biết rằng cây nọ cách cây kia 5m và 4 góc có 4 cây. Hỏi cần tất cả bao nhiêu cây?
Hướng dẫn:
Chiều rộng hình chữ nhật: (m)
Chu vi hình chữ nhật: (m)
Số cây cần thiết là: 770: 5 = 154 (cây)
Bài 5: Ba lớp 6 có 102 học sinh. Số HS lớp A bằng 8/9 số HS lớp B. Số HS lớp C bằng 17/16 số HS lớp A. Hỏi mỗi lớp có bao nhiêu học sinh?
Hướng dẫn:
Số học sinh lớp 6B bằng học sinh lớp 6A (hay bằng )
Số học sinh lớp 6C bằng học sinh lớp 6A
Tổng số phần của 3 lớp: 18+16+17 = 51 (phần)
Số học sinh lớp 6A là: (102 : 51) . 16 = 32 (học sinh)
Số học sinh lớp 6B là: (102 : 51) . 18 = 36 (học sinh)
Số học sinh lớp 6C là: (102 : 51) . 17 = 34 (học sinh)
Bài 6: 1/ Giữ nguyên tử số, hãy thay đổi mẫu số của phân số soa cho giá trị của nó giảm đi giá trị của nó. Mẫu số mới là bao nhiêu?
Hướng dẫn
Gọi mẫu số phải tìm là x, theo đề bài ta có:
Vậy x = 
Bài 7: Ba tổ công nhân trồng được tất cả 286 cây ở công viên. Số cây tổ 1 trồng được bằng số cây tổ 2 và số cây tổ 3 trồng được bằng số cây tổ 2. Hỏi mỗi tổ trồng được bao nhiêu cây?
Hướng dẫn:
90 cây; 100 cây; 96 cây.
========================
Bài 1: 1/ Một lớp học có số HS nữ bằng số HS nam. Nếu 10 HS nam chưa vào lớp thì số HS nữ gấp 7 lần số HS nam. Tìm số HS nam và nữ của lớp đó.
2/ Trong giờ ra chơi số HS ở ngoài bằng 1/5 số HS trong lớp. Sau khi 2 học sinh vào lớp thì số số HS ở ngoài bừng 1/7 số HS ở trong lớp. Hỏi lớp có bao nhiêu HS?
Hướng dẫn:
1/ Số HS nam bằng số HS nữ, nên số HS nam bằng số HS cả lớp.
Khi 10 HS nam chưa vào lớp thì số HS nam bằng số HS nữ tức bằng số HS cả lớp.
Vậy 10 HS biểu thị - = (HS cả lớp)
Nên số HS cả lớp là: 10 : = 40 (HS)
Số HS nam là : 40. = 15 (HS)
Số HS nữ là : 40. = 25 (HS)
2/ Lúc đầu số HS ra ngoài bằng số HS trong lớp, tức số HS ra ngoài bằng số HS trong lớp.
Sau khi 2 em vào lớp thì số HS ở ngoài bằng số HS của lớp. Vậy 2 HS biểu thị 
- = (số HS của lớp)
Vậy số HS của lớp là: 2 : = 48 (HS)
Bài 2: 1/ Ba tấm vải có tất cả 542m. Nết cắt tấm thứ nhất , tấm thứ hai , tấm thứ ba bằng chiều dài của nó thì chiều dài còn lại của ba tấm bằng nhau. Hỏi mỗi tấm vải bao nhiêu mét?
Hướng dẫn:
Ngày thứ hai hợp tác xã gặt được:
 (diện tích lúa)
Diện tích còn lại sau ngày thứ hai:
 (diện tích lúa)
 diện tích lúa bằng 30,6 a. Vậy trà lúa sớm hợp tác xã đã gặt là:
30,6 : = 91,8 (a)
Bài 3: Một người có xoài đem bán. Sau khi án được 2/5 số xoài và 1 trái thì còn lại 50 trái xoài. Hỏi lúc đầu người bán có bao nhiêu trái xoài
Hướng dẫn
Cách 1: Số xoài lức đầu chia 5 phần thì đã bắn 2 phần và 1 trái. Như vậy số xoài còn lại là 3 phần bớt 1 trsi tức là: 3 phần bằng 51 trái. 
Số xoài đã có là trái
Cách 2: Gọi số xoài đem bán có a trái. Số xoài đã bán là 
Số xoài còn lại bằng: 
(trái)
==================
Chủ đề 20: TìM Tỉ Số CủA HAI Số
A> MụC TIÊU
HS hiểu được ý nghĩa và biết cách tìm tỉ số của hai số, tỉ số phần trăm, tỉ lệ xích.
Có kĩ năng tìm tỉ số, tỉ số phần trăn và tỉ lệ xích.
Có ý thức áp dụng các kiến thức và kĩ năng nói teen vào việc giải một số bài toán thực tiễn.
B> NộI DUNG
Bài tập
Bài 1: 1/ Một ô tô đi từ A về phía B, một xe máy đi từ B về phía A. Hai xe khởi hành cùng một lúc cho đến khi gặp nhau thì quãng đường ôtô đi được lớn hơn quãng đường của xe máy đi là 50km. Biết 30% quãng đường ô tô đi được bằng 45% quãng đường xe máy đi được. Hỏi quãng đường mỗi xe đi được bằng mấy phần trăm quãng đường AB.
2/ Một ô tô khách chạy với tốc độ 45 km/h từ Hà Nội về Thái Sơn. Sau một thời gian một ôtô du lịch cũng xuất phát từ Hà Nội đuổi theo ô tô khách với vận tốc 60 km/h. Dự định chúng gặp nhau tại thị xã Thái Bình cách Thái Sơn 10 km. Hỏi quãng đường Hà Nội – Thái Sơn?
Hướng dẫn:
1/ 30% = ; 45% = 
 quãng đường ôtô đi được bằng quãng đường xe máy đi được. 
Suy ra, quãng đường ôtô đi được bằng quãng đường xe máy đi được.
Quãng đường ôtô đi được: 50: (30 – 20) x 30 = 150 (km)
Quãng đường xe máy đi được: 50: (30 – 20) x 20 = 100 (km)
2/ Quãng đường đi từ N đến Thái Bình dài là: 40 – 10 = 30 (km)
Thời gian ôtô du lịch đi quãng đường N đến Thái Bình là: 30 : 60 = (h)
Trong thời gian đó ôtô khách chạy quãng đường NC là: 40.= 20 (km)
Tỉ số vận tốc của xe khách trước và sau khi thay đổi là: 
Tỉ số này chính lầ tỉ số quãng đường M đến Thái Bình và M đến C nên:
MTB – MC = MC – MC = MC
Vậy quãng đường MC là: 10 : = 80 (km)
Vì MTS = 1 - = (HTS)
Vậy khoảng cách Hà Nội đến Thái Sơn (HNTS) dài là:
100 : = 100. = 130 (km)
Bài 2: . 1/ Nhà em có 60 kg gạo đựng trong hai thùng. Nếu lấy 25% số gạo của thùng thứ nhất chuyển sang thùng thứ hai thì số gạo của hai thùng bằng nhau. Hỏi số gạo của mỗi thùng là bao nhiêu kg?
Hướng dẫn:
Nếu lấy số gạo thùng thứ nhất làm đơn vị thì số gạo của thùng thứ hai bằng (đơn vị) (do 25% = ) và số gạo của thùng thứ nhất bằng số gạo của thùng thứ hai + số gạo của thùng thứ nhất.
Vậy số gạo của hai thùng là: (đơn vị)
đơn vị bằng 60 kg. Vậy số gạo của thùng thứ nhất là: (kg)
Số gạo của thùng thứ hai là: 60 – 40 = 20 (kg)
Bài 3: Một đội máy cày ngày thứ nhất cày được 50% ánh đồng và thêm 3 ha nữa. Ngày thứ hai cày được 25% phần còn lại của cánh đồng và 9 ha cuối cùng. Hỏi diện tích cánh đồng đó là bao nhiêu ha?
2/ Nước biển chưa 6% muối (về khối lượng). Hỏi phải thêm bao nhiêu kg nước thường vào 50 kg nước biển để cho hỗn hợp có 3% muối?
Hướng dẫn:
1/ Ngày thứ hai cày được: (ha)
Diện tích cánh đồng đó là: (ha)
2/ Lượng muối chứa trong 50kg nước biển: (kg)
Lượng nước thường cần phải pha vào 50kg nước biển để được hỗn hợp cho 3% muối:
100 – 50 = 50 (kg)
Bài4: Trên một bản đồ có tỉ lệ xích là 1: 500000. Hãy tìm:
a/ Khoảng cách trên thực tế của hai điểm trên bản đồ cách nhau 125 milimet.
b/ Khoảng cách trên bản đồ của hai thành phố cách nhau 350 km (trên thực tế).
Hướng dẫn
a/ Khảng cách trên thực tế của hai điểm là:
125.500000 (mm) = 125500 (m) = 62.5 (km).
b/ Khảng cách giữa hai thành phố trên bản đồ là:
350 km: 500000 = 350000:500000 (m) = 0.7 m

Tài liệu đính kèm:

  • docDay them ky II.doc