Hoạt động của thầy Hoạt động của trị Bi ghi
Hoạt động 1: Kiểm tra bi cũ
Giải phương trình :
Gọi HS nhận xt
GV nhận xét và ghi điểm Một HS ln bảng lm bi, HS cả lớp lm bi vo vở
HS nhận xt bi lm của bạn
Hoạt động 2: Luyện tập
Yêu cầu HS đọc đề
Yêu cầu HS làm bài
GV theo dõi HS thực hiện
Gọi hai HS ln bảng trình by trình bày
Nhận xét bài làm của bạn?
GV chốt lại những điểm cần lưu ý
Yêu cầu HS đọc đề
Hãy nêu cách giải đối với bài này ?
Sử dụng công thức để khai triển ?
Gọi HS trình bày
Nhận xét bài làm của bạn?
GV nhận xét v ch ý cho HS khi giải các phương trình chứa ẩn ở mẫu
Yêu cầu HS làm bài 39d
Hãy nêu cách làm ?
Gọi HS trình bày
Gv theo dõi và đôn đốc HS dưới lớp thực hiện
Nhận xét bài làm của bạn?
GV nhận xét
HS đọc đề
Cả lớp làm bài
HS trình bày
HS nhận xét
HS theo dõi khắc sâu
HS đọc yu cầu của đề
HS trả lời
Hai HS ln bảng trình by
Cả lớp cùng thực hiện
HS nhận xét
HS đọc đề
Chuyển các hạng tử sang vế trái sau đó khai triển vế trái
Một HS ln bảng trình by, HS cả lớp lm bi vo vở
HS nhận xét
Bi 37 / 56
( 1)
Đặt pt trở thành :
pt (2) vô nghiệm .vậy pt (1) vô nghiệm
b/ 5x4+2x2–16=10–x2
5x4+3x2–26=0
Đặt x2=t (t0) phương trình trở thành :
5t2+3t–26=0
Giải phương trình trn ta cĩ
t1=2 (thỏa mn); t2= –2,6 (loại)
Với t1=2 x1= v x1= –
Vậy phương trình đ cho cĩ hai nghiệm x1= v x1= –
Bi 38 / 56
a/ (x–3)2+(x+4)2=23–3x
x2–6x+9+x2+8x+16=23–3x
2x2+5x+2=0
Giải phương trình ta cĩ x1=2; x2= –0,5
e/
ĐKXĐ: x3
14=x2–9+x+3
x2+x –20=0
Giải phương trình trn ta cĩ x1=4(Thỏa mn ĐKXĐ);
x2= –5 (Thỏa mn ĐKXĐ)
Vậy phương trình đ cho cĩ hai nghiệm x1=4; x2= –5
Bi 39/57
d/ (x2+2x–5)2=(x2– x+5)2
(x2+2x–5)2–(x2– x+5)2=0
(x2+2x–5–x2+x–5)(x2+2x–5+ x2– x+5)=0
(3x–10)(2x2–x)=0
Vậy phương trình cĩ ba nghiệm x1=; x2=0; x3=0,5
Tuần: 30 Ngày soạn: 04/04/2006 Ngày giảng: 05/04/2006 Tiết 61 : LUYỆN TẬP Mục tiêu – HS được củng cố cách giải của một số phương trình quy về phương trình bậc hai, chú ý khi giải phương trình chứa ẩn ở mẫu phải tìm ĐKXĐ – Rèn kỹ năng phân tích đa thức thành nhân tử, kiểm tra để chọn giá trị thích hợp của ẩn – Giáo dục tính cẩn thận, chính xác trong biến đổi và tính tốn Phương tiện dạy học: – GV: Giáo án, SGK, SGV, SBT. – HS: Ơn tập cách giải các phương trình bậc hai. Tiến trình dạy học: – Ổn định: 9/6 9/7 Hoạt động của thầy Hoạt động của trị Bài ghi Hoạt động 1: Kiểm tra bài cũ Giải phương trình : Gọi HS nhận xét GV nhận xét và ghi điểm Một HS lên bảng làm bài, HS cả lớp làm bài vào vở HS nhận xét bài làm của bạn Hoạt động 2: Luyện tập Yêu cầu HS đọc đề Yêu cầu HS làm bài GV theo dõi HS thực hiện Gọi hai HS lên bảng trình bày trình bày Nhận xét bài làm của bạn? GV chốt lại những điểm cần lưu ý Yêu cầu HS đọc đề Hãy nêu cách giải đối với bài này ? Sử dụng công thức để khai triển ? Gọi HS trình bày Nhận xét bài làm của bạn? GV nhận xét và chú ý cho HS khi giải các phương trình chứa ẩn ở mẫu Yêu cầu HS làm bài 39d Hãy nêu cách làm ? Gọi HS trình bày Gv theo dõi và đôn đốc HS dưới lớp thực hiện Nhận xét bài làm của bạn? GV nhận xét HS đọc đề Cả lớp làm bài HS trình bày HS nhận xét HS theo dõi khắc sâu HS đọc yêu cầu của đề HS trả lời Hai HS lên bảng trình bãy Cả lớp cùng thực hiện HS nhận xét HS đọc đề Chuyển các hạng tử sang vế trái sau đĩ khai triển vế trái Một HS lên bảng trình bày, HS cả lớp làm bài vào vở HS nhận xét Bài 37 / 56 ( 1) Đặt pt trở thành : Þ pt (2) vô nghiệm .vậy pt (1) vô nghiệm b/ 5x4+2x2–16=10–x2 5x4+3x2–26=0 Đặt x2=t (t0) phương trình trở thành : 5t2+3t–26=0 Giải phương trình trên ta cĩ t1=2 (thỏa mãn); t2= –2,6 (loại) Với t1=2 x1= và x1= – Vậy phương trình đã cho cĩ hai nghiệm x1= và x1= – Bài 38 / 56 a/ (x–3)2+(x+4)2=23–3x x2–6x+9+x2+8x+16=23–3x 2x2+5x+2=0 Giải phương trình ta cĩ x1=2; x2= –0,5 e/ ĐKXĐ: x3 14=x2–9+x+3 x2+x –20=0 Giải phương trình trên ta cĩ x1=4(Thỏa mãn ĐKXĐ); x2= –5 (Thỏa mãn ĐKXĐ) Vậy phương trình đã cho cĩ hai nghiệm x1=4; x2= –5 Bài 39/57 d/ (x2+2x–5)2=(x2– x+5)2 (x2+2x–5)2–(x2– x+5)2=0 (x2+2x–5–x2+x–5)(x2+2x–5+ x2– x+5)=0 (3x–10)(2x2–x)=0 Vậy phương trình cĩ ba nghiệm x1=; x2=0; x3=0,5 Hoạt động 4: Hướng dẫn dặn dị Học cách giải các phương trình quy về phương trình bậc hai Bài tập về nhà: Hồn thành các bài tập cịn lại. Xem trước bài “Giải bài tốn bằng cách lập phương trình”
Tài liệu đính kèm: