Giáo án Đại số Lớp 7 - Tuần 9 - Nguyễn Đức Hoài

Giáo án Đại số Lớp 7 - Tuần 9 - Nguyễn Đức Hoài

I/ MỤC TIÊU :

- Học sinh biết được số thực là tên gọi chung cho cả số hữu tỉ và số vô tỉ. Biết được cách biểu diễn thập phân của số thực. Hiểu được ý nghĩa của trục số thực.

- Thấy được sự phát triển của hệ thống số từ N Z Q R

- Rèn luyện ý thức tự giác học tập của HS.

II/ CHUẨN BỊ : Bảng phụ.

III/TIẾN TRÌNH DẠY HỌC :

HĐ1: KIỂM TRA BÀI CŨ

- GV nêu yêu cầu kiểm tra:

HS1: Định nghĩa căn bậc hai của một số a0. Tính:

HS2: Nêu quan hệ giữa số hữu tỉ, số vô tỉ với số thập phân.

- GV nhận xét và cho điểm phần trình bày của HS.

HĐ2: 1. SỐ THỰC

- Lấy ví dụ về các số tự nhiên, nguyên âm, phân số, số thập phân hữu hạn, vô hạn, số vô tỉ ?

- Chỉ ra các số hữu tỉ , số vô tỉ ?

- GV:Các số trên đều gọi chung là số thực.

- Nêu quan hệ của các tập N, Z, Q, I với R?

- Yêu cầu học sinh làm ?1

- x có thể là những số nào?

- Yêu cầu HS lớp làm bài tập 87 - SGK

- Yêu cầu 1 HS đọc đề bài, 2 HS lên bảng làm

- Cho 2 số thực x và y, có những trường hợp nào xảy ra ?

- GV đưa ra: Việc so sánh 2 số thực tương tự như so sánh 2 số hữu tỉ viết dưới dạng số thập phân

- Nhận xét phần nguyên, phần thập phân so sánh ?

- Yêu cầu học sinh làm ?2

- Yêu cầu cả lớp làm bài ít phút, sau đó 2 HS lên bảng làm. - HS lấy ví dụ: 2; -5; ; - 0,234; 1,(45); ; .

- HS: số hữu tỉ 2; -5; ; -0,234; 1,(45); số vô tỉ ;

- HS: + Tập hợp số thực bao gồm số hữu tỉ và số vô tỉ .

+ Các tập N, Z, Q, I đều là tập con của tập R

- HS làm ?1: Cách viết xR cho ta biết x là số thực

x có thể là số hữu tỉ hoặc số vô tỉ

Bài tập 87 (tr44-SGK)

3Q 3R 3I -2,53Q

0,2(35)I NZ IR

- Học sinh suy nghĩ trả lời

Với 2 số thực x và y bất kì ta luôn có hoặc x = y hoặc x > y hoặc x <>

Ví dụ: So sánh 2 số

- HS so sánh:

a) 0,3192. < 0,32(5)="" hàng="" phần="" trăm="" của="" 0,3192.="" nhỏ="" hơn="" hàng="" phần="" trăm="">

b) 1,24598. > 1,24596.

- 2HS lên bảng làm ?2

a) 2,(35) <>

b)Ta có

 

doc 4 trang Người đăng lananh572 Lượt xem 553Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án Đại số Lớp 7 - Tuần 9 - Nguyễn Đức Hoài", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tuần 9: Soạn ngày : Ngày dạy:
Tiết 17: Đ11. Số vô tỉ - khái niệm về căn bậc hai
I/ Mục Tiêu : 
Học sinh có khái niệm về số vô tỉ và thế nào là căn bậc hai của một số không âm.
Biết sử dụng đúng kí hiệu. Rèn kĩ năng diễn đạt bằng lời.
II/ Chuẩn bị : Bảng phụ: Kiểm tra xem cách viết sau có đúng không:
a) ; 	b) Căn bậc hai của 49 là 7; 	c) ;	d) 
III/Tiến trình dạy học : 
HĐ2: 1. Số vô tỉ.
GV yêu cầu HS đọc đề toán và vẽ hình.
Yêu cầu HS lớp vẽ hình vào vở
Giáo viên gợi ý:
Tính diện tích hình vuông AEBF ?
So sánh diện tích hình vuông ABCD và diện tích ABE ?
Vậy =?
Gọi độ dài đường chéo AB là x, biểu thị S qua x ?
GV đưa ra số x = 1,41421356.... giới thiệu đây là số vô tỉ.
Số vô tỉ là gì ?
GV nhấn mạnh: Số hữu tỉ gồm số thập phân hữu hạn, số thập phân VHTH tuần hoàn và các số thập phân vô hạn không tuần hoàn gọi là số vô tỉ.
Bài toán:
- 1 HS đọc đề bài
- 1 HS lên bảng vẽ hình
- HS: Diện tích hình vuông AEBF = 1
- HS: 
- HS: ; 
Diện tích hình vuông ABCD là 2
Độ dài cạnh AB là x: 
x = 1,41421356.... đây là số vô tỉ
-HS: Số vô tỉ là số viết được dưới dạng số thập phân vô hạn không tuần hoàn. Tập hợp các số vô tỉ là I
HĐ2: 2. Khái niệm căn bậc hai
Yêu cầu học sinh tính.
 GV: Ta nói -3 và 3 là căn bậc hai của 9
Tính: ?
- HS đứng tại chỗ đọc kết quả:
 32 = 9 (-3)2 = 9
- HS ghi: 3 và -3 là căn bậc hai của 9
HS: và là căn bậc hai của ; 0 là căn bậc hai của 0
Tìm x/ x2 = -1 ?
 Vậy các số như thế nào thì có căn bậc hai ?
Căn bậc hai của 1 số không âm là 1 số như thế nào?
Yêu cầu học sinh làm ?1
Yêu cầu HS lớp làm bìa, 1 HS lên bảng làm.
Mỗi số dương có mấy căn bậc hai, số 0 có mấy căn bậc hai ?
GV: Không được viết vì vế trái kí hiệu chỉ cho căn dương của 4
 Yêu cầu HS làm ?2
Viết các căn bậc hai của 3; 10; 25?
GV: Có thể chứng minh được là các số vô tỉ. Vậy có bao nhiêu số vô tỉ ?
- HS: Không có số x nào.
- Chỉ có số không âm mới có căn bậc hai 
- HS nêu định nghĩa: SGK 
- HS làm ?1
Căn bậc hai của 16 là 4 và -4
- HS suy nghĩ trả lời: Mỗi số dương có 2 căn bậc hai . Số 0 chỉ có 1 căn bậc hai là 0
- HS nêu chú ý - SGK: Không được viết 
Mà viết: Số dương 4 có hai căn bậc hai là: và 
- HS làm ?2
+ Căn bậc hai của 3 là và 
+ Căn bậc hai của 10 là và 
+ Căn bậc hai của 25 là và 
- HS: có vô số số vô tỉ.
HĐ4: Củng cố.
GV yêu cầu học sinh làm bài tập 82 (tr41-SGK) theo nhóm:
Bài làm: a) Vì 52 = 25 nên 
b) Vì 72 = 49 nên d) Vì nên 
c) Vì 12 = 1 nên 
Yêu cầu học sinh sử dụng máy tính bỏ túi để làm bài tập 86
Yêu cầu 1 HS báo cáo kết quả và HS lớp nhận xét, sửa sai (nếu có).
V. Hướng dẫn học ở nhà:(2')
Cần nắm vững căn bậc hai của một số a không âm, so sánh phân biệt số hữu tỉ và số vô tỉ. Đọc mục có thể em chưa biết.
Làm bài tập 83; 84; 86 (tr41; 42-SGK) 106; 107; 110 (tr18-SBT)
Tiết sau mang thước kẻ, com pa
Tuần 9: Soạn ngày : Ngày dạy:
Tiết 18: Đ12. Số thực
I/ Mục Tiêu : 
Học sinh biết được số thực là tên gọi chung cho cả số hữu tỉ và số vô tỉ. Biết được cách biểu diễn thập phân của số thực. Hiểu được ý nghĩa của trục số thực.
Thấy được sự phát triển của hệ thống số từ N Z Q R
Rèn luyện ý thức tự giác học tập của HS.
II/ Chuẩn bị : Bảng phụ. 
III/Tiến trình dạy học : 
HĐ1: Kiểm tra bàI cũ
GV nêu yêu cầu kiểm tra:
HS1: Định nghĩa căn bậc hai của một số a0. Tính: 
HS2: Nêu quan hệ giữa số hữu tỉ, số vô tỉ với số thập phân. 
GV nhận xét và cho điểm phần trình bày của HS.
HĐ2: 1. Số thực
Lấy ví dụ về các số tự nhiên, nguyên âm, phân số, số thập phân hữu hạn, vô hạn, số vô tỉ ?
Chỉ ra các số hữu tỉ , số vô tỉ ?
GV:Các số trên đều gọi chung là số thực.
Nêu quan hệ của các tập N, Z, Q, I với R?
Yêu cầu học sinh làm ?1
x có thể là những số nào?
Yêu cầu HS lớp làm bài tập 87 - SGK
Yêu cầu 1 HS đọc đề bài, 2 HS lên bảng làm
Cho 2 số thực x và y, có những trường hợp nào xảy ra ?
GV đưa ra: Việc so sánh 2 số thực tương tự như so sánh 2 số hữu tỉ viết dưới dạng số thập phân 
Nhận xét phần nguyên, phần thập phân so sánh ?
Yêu cầu học sinh làm ?2
Yêu cầu cả lớp làm bài ít phút, sau đó 2 HS lên bảng làm.
- HS lấy ví dụ: 2; -5; ; - 0,234; 1,(45); ; ...
- HS: số hữu tỉ 2; -5; ; -0,234; 1,(45); số vô tỉ ; 
- HS: + Tập hợp số thực bao gồm số hữu tỉ và số vô tỉ .
+ Các tập N, Z, Q, I đều là tập con của tập R
- HS làm ?1: Cách viết xR cho ta biết x là số thực
x có thể là số hữu tỉ hoặc số vô tỉ 
Bài tập 87 (tr44-SGK)
3Q 3R 3I -2,53Q
0,2(35)I NZ IR
- Học sinh suy nghĩ trả lời
Với 2 số thực x và y bất kì ta luôn có hoặc x = y hoặc x > y hoặc x < y.
Ví dụ: So sánh 2 số
- HS so sánh:
a) 0,3192... < 0,32(5) hàng phần trăm của 0,3192... nhỏ hơn hàng phần trăm 0,32(5)
b) 1,24598... > 1,24596...
- 2HS lên bảng làm ?2
a) 2,(35) < 2,369121518...
b)Ta có 
HĐ3: 2. Trục số thực
GV:Ta đã biết biểu diễn số hữu tỉ trên trục số, vậy để biểu diễn số vô tỉ ta làm như thế nào?
Ta xét ví dụ – SGK.
Qua ví dụ trên ta rút ra nhận xét gì ?
GV hướng dẫn học sinh biểu diễn.
GV nêu ra chú ý - SGK
- HS nghiên cứu SGK (3')
Ví dụ: Biểu diễn số trên trục số.
-HS: Mỗi số thực được biểu diễn bởi 1 điểm trên trục số. Mỗi điểm trên trục số đều biểu diễn 1 số thực.
Trục số gọi là trục số thực.
- HS nêu chú ý -SGK: Trong tập hợp các số thực cũng có các phép toán với các tính chất tương tự như trong tập hợp các số hữu tỉ.
HĐ4: Củng cố.
GV yêu cầu HS làm các bài 88, 89 (tr45-SGK).
Giáo viên treo bảng phụ bài tập 88, 89. Học sinh lên bảng làm
Bài tập 88: a) Nếu a là số thực thì a là số hữu tỉ hoặc số vô tỉ 
 b) Nếu b là số vô tỉ thì b được viết dưới dạng số thập phân vô hạn không tuần hoàn
Bài tập 89: Câu a, c đúng; câu b sai
Hướng dẫn về nhà. 
Học theo SGK, nắm được số thực gồm số hữu tỉ và số vô tỉ 
Làm bài tập: 90 – SGK; Bài tập: 117; 118 (tr20-SBT)

Tài liệu đính kèm:

  • docTuÇn 9.doc