Giáo án bồi dưỡng học sinh giỏi môn Toán học Lớp 6 - Năm học 2008-2009 - Hồ Quế Chuân

Giáo án bồi dưỡng học sinh giỏi môn Toán học Lớp 6 - Năm học 2008-2009 - Hồ Quế Chuân

Bài 1: (2 điểm)

1) Chứng minh rằng nếu P và 2P + 1 là các số nguyên tố lớn hơn 3 thì 4P + 1 là hợp số.

2) Hãy tìm BSCNN của ba số tự nhiên liên tiếp.

Bài 2: (2 điểm)

Hãy thay các chữ số vào các chữ cái x, y trong để N chia hết cho 13.

Bài 3: (2 điểm)

 Vòi nước I chảy vào đầy bể trong 6 giờ 30 phút. Vòi nước II chảy vào đầy bể trong 11 giờ 40 phút. Nếu vòi nước I chảy vào trong 3 giờ; vòi nước II chảy vào trong 5 giờ 25 phút thì lượng nước chảy vào bể ở vòi nào nhiều hơn. Khi đó lượng nước trong bể được bao nhiêu phần trăm của bể.

Bài 4: (2 điểm)

 Bạn Huệ nghĩ ra một số có ba chữ số mà khi viết ngược lại cũng được một số có ba chữ số nhỏ hơn số ban đầu. Nếu lấy hiệu giữa số lớn và số bé của hai số đó thì được 396. Bạn Dung cũng nghĩ ra một số thoả mãn điều kiện trên.

Hỏi có bao nhiêu số có tính chất trên, hãy tìm các số ấy.

 

doc 25 trang Người đăng lananh572 Lượt xem 657Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án bồi dưỡng học sinh giỏi môn Toán học Lớp 6 - Năm học 2008-2009 - Hồ Quế Chuân", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề kiểm tra cuối học kỳ I Năm học 2008 – 2009
Môn: Toán 6 (thời gian làm bài: 90 phút)
Bài 1 (2,5 điểm): Hãy chọn ý trả lời đúng trong các câu sau:
Số vừa chia hết cho 2, vừa chia hết cho 3 là:
A. 2364	B. 2003	C. 2236	D. 6979
2. Tính 24.3+5.32 bằng:
A. 54	B. 64	C. 93	D. 73
3. Nếu a:3 và b:9 thì tổng a+b chia hết cho:
A. 3	B. 9	C. 6	D. một số khác
4. 80 là bội chung của
A. 16 và 15	B. 20 và 50	C. 16 và 20	D. 40 và 45
5. ƯCLN (24,36)=
A. 24	B. 36	C. 12	D. 6
6. Số đối của |-7| là 
A. 7	B. -7	C. |7|	D. Một kết quả khác
7. xz và x+(-9) =-29 thì x bằng:
A. -38	B. 20	C. -20	D. 38
8. Cho biết số nguyên a lớn hơn -2. Số a là:
A. Số dương	B. Số âm	C. Số có thể âm, có thể dương hoặc số 0
D. Hoặc là số 0 hoặc là số dương.
9. Nếu điểm B nằm giữa 2 điểm A và C thì:
a. AB+BC >AC	c. AB +BC = AC
b. AB +AC = BC	d. AB + BC <AC
10. Cho đường thẳng xy. Trên đường thẳng này cho 5 điểm phân biệt. Số tia có được là ( số tia phân biệt).
A. 5	B. 10	C. 6	D. Một kết quả khác
Bài 2 (1,5 điểm): Thực hiện phép tính:
142 + (-126) +792 – 142+126
(85 -106 +17) –(85+17)
(42.5+42.11): 43
Bài 3(1,5điểm): Tìm xz biết
x-15 = (-37) -7	
5- (29 – 4)=x-(14-5)
3. = 
Bài 4(1,5 điểm): Một số sách nếu xếp thành từng bó 10 cuốn, 12 cuốn hoặc 15 cuốn thì vừa đủ. Tính số sách đó biết rằng số sách trong khoảng từ 100 đến 150.
Bài 5: (2,5 điểm):
Cho đoạn thẳng MN =16cm. Trên tia MN lấy điểm A sao cho MA = 6cm.
Kể tên các đoạn thẳng có trong hình
So sánh MA và NA
Gọi S là trung điểm của AN. Tính SM
Bài 6(0,5điểm): Trên đường thẳng xy cho 2000 điểm phân biệt. Trên đường thẳng xy có bao nhiêu tia phân biệt nhận các điểm này làm gốc.
Đề số 1
Bài 1: (2 điểm)
1) Chứng minh rằng nếu P và 2P + 1 là các số nguyên tố lớn hơn 3 thì 4P + 1 là hợp số.
2) Hãy tìm BSCNN của ba số tự nhiên liên tiếp.
Bài 2: (2 điểm)
Hãy thay các chữ số vào các chữ cái x, y trong để N chia hết cho 13.
Bài 3: (2 điểm) 
 Vòi nước I chảy vào đầy bể trong 6 giờ 30 phút. Vòi nước II chảy vào đầy bể trong 11 giờ 40 phút. Nếu vòi nước I chảy vào trong 3 giờ; vòi nước II chảy vào trong 5 giờ 25 phút thì lượng nước chảy vào bể ở vòi nào nhiều hơn. Khi đó lượng nước trong bể được bao nhiêu phần trăm của bể.
Bài 4: (2 điểm) 
 Bạn Huệ nghĩ ra một số có ba chữ số mà khi viết ngược lại cũng được một số có ba chữ số nhỏ hơn số ban đầu. Nếu lấy hiệu giữa số lớn và số bé của hai số đó thì được 396. Bạn Dung cũng nghĩ ra một số thoả mãn điều kiện trên.
Hỏi có bao nhiêu số có tính chất trên, hãy tìm các số ấy.
Bài 5: (2 điểm)
 Chứng minh rằng: một số có chẵn chữ số chia hết cho 11 thì hiệu giữa tổng các chữ số “ đứng ở vị trí chẵn” và tổng các chữ số đứng ở “vị trí lẻ”, kể từ trái qua phải chia hết cho 11.
(Biết và chia hết cho 11)
Đề số 2
Câu 1: (4 điểm)
a) Tìm phân số tối giản lớn nhất mà khi chia các phân số ; ; cho phân số ấy ta được kết quả là các số tự nhiên.
b) Cho a là một số nguyên có dạng: a = 3b + 7. Hỏi a có thể nhận những giá trị nào trong các giá trị sau ? tại sao ? a = 11; a = 2002; a = 11570 ; a = 22789; a = 29563; a = 299537.
Câu 2: (6 điểm)
1) Cho 
a) Tính A.
b) A có chia hết cho 2, cho 3, cho 5 không ?
c) A có bao nhiêu ước tự nhiên. Bao nhiêu ước nguyên ?
2) Cho và 
So sánh A và B.
3) Tìm số nguyên tố P để P + 6; P + 8; P + 12; P +14 đều là các số nguyên tố.
Câu 3: (4 điểm)
 Có 3 bình, nếu đổ đầy nước vào bình thứ nhất rồi rót hết lượng nước đó vào hai bình còn lại, ta thấy: Nếu bình thứ hai đầy thì bình thứ ba chỉ được 1/3 dung tích. Nếu bình thứ ba đầy thì bình thứ hai chỉ được 1/2 dung tích. Tính dung tích mỗi bình, biết rằng tổng dung tích ba bình là 180 lít.
Câu 4: (4 điểm)
 Cho tam giác ABC có BC = 5,5 cm. Điểm M thuộc tia đối của tia CB sao cho CM = 3cm.
a) Tính độ dài BM.
b) Biết BAM = 800, BAC = 600 . Tính CAM.
c) Tính độ dài BK thuộc đoạn BM biết CK = 1cm.
Câu 5: (2 điểm) Cho và ( Với n ẻ N, ).
Chứng minh: a và b là hai số nguyên tố cùng nhau. 
Đề số 3
Câu 1: (4 điểm) Hãy xác định câu nào đúng, câu nào sai trong các câu sau:
a) Nếu p và q là các số nguyên tố lớn hơn 2 thì p.q là số lẻ.
b) Tổng hai số nguyên tố là hợp số.
c) Nếu a a.
d) Từ đẳng thức 8. 3 =12. 2 ta lập được cặp phân số bằng nhau là: 
g) Nếu n là số nguyên tố thì n/35 là phân số tối giản.
h) Hai tia CA và CB là hai tia đối nhau nếu A, B, C thẳng hàng.
k) Nếu góc xoy nhỏ hơn góc xoz thì tia ox nằm giữa hai tia oy và oz.
Câu 2: (6 điểm)
1. Cho 
a) Biết A = 181. Hỏi A có bao nhiêu số hạng ?
b) Biết A có n số hạng. Tính giá trị của A theo n ?
2. Cho . So sánh A với 1 ?
3. Tìm số nguyên tố p để p, p + 2 và p + 4 đều là các số nguyên tố.
Câu 3: (5 điểm)
1. Một lớp học có chưa đến 50 học sinh. Cuối năm xếp loại học lực gồm 3 loại: Giỏi, Khá, Trung bình, trong đó 1/16 số học sinh của lớp xếp loại trung bình, 5/6 số học sinh của lớp xếp loại giỏi, còn lại xếp loại khá. Tính số học sinh khá của lớp.
2. Có thể rút gọn (n ẻ Z) cho những số nguyên nào ?
Câu 4: (3 điểm) Trên tia Ax lấy hai điểm B, C sao cho AB = 5cm; BC = 2 cm. 
a) Tính AC.
b) Điểm C nằm ngoài đường thẳng AB biết góc AOB bằng 550 và góc BOC bằng 250. Tính góc AOC ?
Câu 5: (2 điểm) Tìm số tự nhiên n biết: 
Đề số 4
 Câu 1: (2 điểm)
1) Rút gọn 
2) Cho 
Chứng minh: S < 1
3) So sánh: và 
 Câu 2: (2 điểm) 
1) Tìm số nguyên tố P sao cho số nguyên tố P + 2 và P +10 là số 
 nguyên tố
2) Tìm giá trị nguyên dương nhỏ hơn 10 của x và y sao cho 3x - 4y = - 21
3)Cho phân số: 
 a) Tìm n để A nguyên. 
 b) Tìm n để A tối giản . 
 Câu 3: (2 điểm) 
 Xếp loại văn hoá của lớp 6A có 2 loại giỏi và khá cuối học kì I tỉ số giữa học sinh giỏi và khá là cuối học kì II có thêm 1 học sinh khá trở thành loại giỏi. Nên tỉ số giữa học sinh giỏi và khá là . Tính số học sinh của lớp ? 
Câu 4: (3 điểm)
 Cho góc AOB và tia phân giác Ox của nó. Trên nửa mặt phẳng có chứa tia OB. Với bờ là đường thẳng OA ta vẽ tia Oy sao cho : AOy > AOB
 Chứng tỏ rằng :
 a) Tia OB nằm giữa 2 tia Ox, Oy 
 b) xOy = (AOy + BOy ) : 2
Câu 5: (1điểm)
Cho n ẻ z chứng minh rằng: 5n -1 chia hết cho 4
Đề số 5
Bài 1: (2 điểm)
a) Tính 
b) Tìm x biết:
Bài 2: (2 điểm)
So sánh: 
 và 
Bài 3: (2 điểm) Chứng minh rằng số:
 là hợp số.
Bài 4: (2 điểm)
 Ba bạn Hồng, Lan, Huệ chia nhau một số kẹo đựng trong 6 gói. Gói thứ nhất có 31 chiếc, gói thứ hai có 20 chiếc, gói thứ ba có 19 chiếc, gói thứ tư có 18 chiếc, gói thứ năm có 16 chiếc, gói thứ 6 có 15 chiếc. Hồng và Lan đã nhận được 5 gói và số kẹo của Hồng gấp đôi số kẹo của Lan. Tính số kẹo nhận được của mỗi bạn.
Bài 5: (2 điểm)
 Cho điểm O trên đường thẳng xy, trên một nửa mặt phẳng có bờ là xy, vẽ tia Oz sao cho góc xOz nhỏ hơn 900.
a) Vẽ các tia Om, On lần lượt là tia phân giác của các góc xOz và góc zOy. Tính góc MON ?
b) Tính số đo các góc nhọn trong hình nếu số đo góc mOz bằng 350.
Đề số 6
Câu 1: (6 điểm)
Tính một cách hợp lí giá trị của các biểu thức sau:
Câu 2: (5 điểm)
1) Tìm các giá trị của a để số 
a) Chia hết cho 15
b) Chia hết cho 45
2) Ba xe ô tô bắt đầu cùng khởi hành lúc 6 giờ sáng, từ cùng một bến. Thời gian cả đi và về của xe thứ nhất là 42 phút, của xe thứ hai là 48 phút, của xe thứ ba là 36 phút. Mỗi chuyến khi trở về bến, xe thứ nhất nghỉ 8 phút rồi đi tiếp, xe thứ hai nghỉ 12 phút rồi đi tiếp, xe thứ ba nghỉ 4 phút rồi đi tiếp. Hỏi 3 xe lại cùng khởi hành từ bến lần thứ hai lúc mấy giờ ?
Câu 3: (3 điểm)
 Cho P là số nguyên tố lớn hơn 3 và 5p +1 cũng là số nguyên tố. Chứng minh rằng 7p +1 là hợp số.
Câu 4: (3 điểm)
 Tia OC là phân giác của góc AOB, vẽ tia OM sao cho góc BMO = 200. Biết góc AOB = 1440.
a) Tính góc MOC.
b) Gọi OB’ là tia đối của tia OB, ON là phân giác của góc AOC. Chứng minh OA là phân giác của góc NOB’.
Câu 5: (2 điểm)
 Thay các chữ số thích hợp (các chữ khác nhau thay bằng các chữ số khác nhau)
Đề số 7
Câu 1: (2 điểm) Chọn những kết quả đúng trong các câu sau:
1) Số 32450 có số ước là:
A. 18 ; B. 24 ; C. 75 ; D. 42
2) Biết ƯCLN(a, b) = 7 và BCNN(a, b) = 210 thì tích a.b là:
A. 1470 ; B. 217 ; C. 2107 ; D. 30
3) Cho không chia hết cho 3. Hỏi phải viết số ngày liên tiếp nhau ít nhất bao nhiêu lần để tạo thành một số chia hết cho 3 ?
A. 2 lần ; B. 3 lần ; C. 4 lần
4) Cho N = 1494 x 1495 x 1496 thì N chia hết cho:
A. 140 ; B. 195 ; C. 180
Câu 2: (2 điểm)
a) Cho đẳng thức: 152 - 53 = 102
Đẳng thức trên đúng hay sai ? Nếu sai hãy chuyển vị trí một chữ số để được đẳng thức đúng ?
b) Tìm một số tự nhiên, biết rằng số đó chia cho 26 thì ta sẽ được số dư bằng hai lần bình phương của số thương.
Câu 3: (2 điểm)
a) Một người nói với bạn: “Nếu tôi sống đến 100 tuổi thì của số tuổi của tôi sẽ lớn hơn của thời gian tôi còn phải sống là 3”. Hỏi người ấy bây giờ bao nhiêu tuổi ?
b) Một số tự nhiên chia cho 4 thì dư 3, chia cho 17 thì dư 9 còn chia cho 19 dư 13. Hỏi số đó chia cho 1292 thì dư bao nhiêu ?
Câu 4: (2 điểm) Người ta viết dãy số tự nhiên liên tiếp: 4; 11; 18; 25.Hỏi:
a) Số 2007 có thuộc dãy số trên không ? Vì sao ?
b) số thứ 659 là số nào ?
Câu 5: (2 điểm)
Cho đoạn thẳng AB, điểm O thuộc tia đối của tia AB. Gọi M, N thứ tự là trung điểm của OA, OB.
a) Chứng tỏ OA < OB.
b) Trong 3 điểm M, O, N điểm nào nằm giữa hai điểm còn lại.
c) Chứng tỏ rằng độ dài của đoạn thẳng MN không phụ thuộc vào vị trí của điểm O.
Đề số 8
Câu 1: (6 điểm) 
 Tính nhanh
a) 2 x 3 x 4 x 5 x 7 x 8 x 25 x 125
b) 
c) 
Câu 2: (3 điểm)
Tìm giá trị của x trong dãy tính sau:
Câu 3: (3 điểm)
 Hai bạn Trang và Giang đi mua 18 gói bánh và 12 gói kẹo để đến lớp liên hoan. Giang đưa cho cô bán hàng 2 tờ 100000 đồng và được trả lại 72000 đồng. Trang nói “Cô tính sai rồi”. Bạn hãy cho biết Trang nói đúng hay sai ? Giải thích tại sao ?
Câu 4: ( 5 điểm)
 Cho hình chữ nhật ABCD. Trên cạnh AB lấy hai điểm M, N sao cho AM = MN = NB và P là điểm chia cạnh CD thành hai phần bằng nhau. ND cắt MP tại O, nối PN. Biết diện tích tam giác DOP lớn hơn diện tích tam giác MON là 3,5 cm2. Hãy tính diện tích hình chữ nhật ABCD.
Câu 5: (3 điểm)
Tìm tất cả các chữ số a và b để số chia cho 2; 5 và 9 đều dư 1.
Đề số 9
Câu 1: (2 điểm) 
a) Tính 
b) So sánh: và 
Câu 2: (2 điểm)
a) Tìm các số nguyên x sao cho 4x-3 chia hết cho x-2.
b) Tìm các số tự nhiên a và b để thoả mãn và (a, b) = 1
Câu 3: (2 điểm)
 Số học sinh của một trường học xếp hàng, nếu xếp mỗi hàng 20 người hoặc 25 người hoặc 30 người đều thừa 15 người. Nếu xếp mỗi hàng 41 người thì vừa đủ. Tính số học sinh của trường đó biết rằng số học sinh của trường đó chưa đến 1000.
Câu 4: (3 điểm) 
 Cho hai góc xOy và xOz, Om là tia phân giác của góc yOz ... từ A đến b gồm một đoạn lên dốc và một đoạn xuống dốc. Một người đi xe đạp lên dốc với vận tốc 10 km/h và xuống dốc với vận tốc 15 km/h. Biết rằng người ấy đi từ A đến B rồi lại từ B về A thì hết tất cả 3 giờ. Tính quãng đường AB.
Câu 4: (3 điểm)
Cho hai góc kề nhau xoy, xoz sao cho xoy = 1000 , xoz = 1200
a) Tia ox có nằm giữa hai tia oy ; oz không ?
b) Tính yoz
c) Tính xoy + yoz + zox
Câu 5: (1 điểm)
 Số 5100 viết trong hệ thập phân tạo thành một số. Hỏi số đó có bao nhiêu chữ số.
Đề số 19
Câu 1: (2 điểm)
a) Tính 
b) Chứng minh rằng A là một luỹ thừa của 2 với
Câu 2: (2 điểm)
a) Tìm số nguyên tố P sao cho P + 6 , P + 12, P + 34, P + 38 là các số nguyên tố.
b) Tìm các số tự nhiên a, b, c, d nhỏ nhất sao cho:
 ; ; 
Câu 3: (2 điểm)
 Tuổi anh hiện nay gấp ba lần tuổi em, lúc tuổi anh bằng tuổi hiện nay của người em. Đến khi tuổi em bằng tuổi hiện nay của người anh thì tổng số tuổi của hai anh em là 35. Tính tuổi anh, tuổi em hiện nay.
Câu 4: (3 điểm) Cho hai tia Ox, Oy đối nhau. Trên cùng một nửa mặt phẳng có bờ chứa tia Ox, vẽ các tia Oz, Ot sao cho xOz = 300 ; yOt = 750
a) Tính zOt
b) Chứng tỏ tia Ot là tia phân giác của zOy.
c) Tính zOt nếu xOz = a , yOt = b 
Câu 5: (1 điểm)
Chứng minh rằng: 
Đề số 20
Bài 1: (2 điểm)
a) Tính: 
b) Tìm chữ số x để 
Bài 2: (2 điểm) Tổng bằng với là phân số tối giản.
Chứng minh rằng: .
Bài 3: (2 điểm) 
 Hai địa điểm A và B cách nhau 72 km. Một ô tô đi từ A về B và một xe đạp đi từ B về A gặp nhau sau 1 giờ 12 phút (hai xe cùng khởi hành). Sau đó ô tô tiếp tục đi về B rồi lại quay về A ngay với vận tốc cũ, ô tô gặp xe đạp sau 48 phút kể từ lúc gặp nhau lần trước. Tính vận tốc ô tô và xe đạp.
Bài 4: (3 điểm) 
 Cho điểm O trên đường thẳng xy, trên một nửa mặt phẳng có bờ là xy, vẽ tia Oz sao cho góc xOz < 900.
a) Vẽ các tia Om, On lần lượt là các tia phân giác của các góc xOz và zOy. Tính góc On.
b) Tính số đo các góc nhọn trong hình nếu số đo góc mOZ = 350
c) Vẽ (O; 2 cm) cắt các tia Ox, Om, Oz, On, Oy lần lượt tại các điểm A, B, C, D, E với các điểm O, A, B, C, D, E kẻ được bao nhiêu đường thẳng phân biệt đi qua các cặp điểm ? Kể tên những đường thẳng đó.
Câu 5: (1 điểm) 
 Cho a, b, c là các số nguyên dương tuỳ ý. Tổng sau có thể là số nguyên dương không ?
Đề số 21
Câu 1: (2 điểm) Tính
a) 
b) 
Câu 2: (2 điểm)
a) Chứng minh rằng: chia hết cho 72.
b) Cho và 
So sánh A và B.
c) Tìm số nguyên tố p để p + 6, p + 8, p + 12 , p + 14 đều là các số nguyên tố.
Câu 3: (2 điểm)
Người ta chia số học sinh lớp 6A thành các tổ, nếu mỗi tổ 9 em thì thừa 1 em, còn nếu mỗi tổ 10 em thì thiếu 3 em. Hỏi có bao nhiêu tổ, bao nhiêu học sinh ?
Câu 4: (3 điểm) Cho DABC có BC = 5,5 cm. Điểm M thuộc tia đối của tia CB sao cho CM = 3cm.
a) Tính độ dài BM.
b) Biết BAM = 800 ; BAC = 600 . Tính CAM
c) Tính độ dài BK thuộc đoạn BM biết CK = 1cm.
Câu 5: (1 điểm)
Chứng minh rằng: 
Đề số 22
Câu 1: (2 điểm) Tính giá trị các biểu thức sau bằng phương pháp hợp lí:
a) 
b) 
Câu 2: (2 điểm)
Cho 
Chứng minh rằng A chia hết cho 3, 7 và 15.
Câu 3: (2 điểm)
 Hai lớp 6A và 6B trồng cây. Số cây lớp 6A trồng bằng số cây lớp 6B trồng. Nếu mỗi lớp đều trồng thêm được 15 cây nữa thì số cấy lớp 6B trồng bằng số cây lớp 6A. Hỏi mỗi lớp trồng được bao nhiêu cây ?
Câu 4: (3 điểm)
 Cho đường thẳng x’x và một điểm O thuộc đường thẳng ấy. Hai điểm A, B nằm trong cùng một nửa mặt phẳng bờ x’x và một điểm C nằm trong nửa mặt phẳng đối của nửa mặt phẳng bờ x’x và có chứa điểm A. Biết xOB =1150 ; AOB = 750 ; x’OC = 400
a) Tính các góc xOA, x’OB.
b) Chứng tỏ ba điểm A, O, C thẳng hàng.
Câu 5: (1 điểm)
Tìm các số nguyên x, y sao cho: 
Đề số 23
Bài 1: (2 điểm)
a) Tính hợp lí 
b) Tìm phân số nhỏ nhất khác 0 mà khi chia phân số này cho các phân số ; ta được kết quả là một số tự nhiên.
Bài 2: (2 điểm)
a) Tìm số tự nhiên có 2 chữ số sao cho viết nó liên tiếp sau số 1999 thì được một số chia hết cho 37.
b) Tìm số chia và thương của một phép chia có số bị chia là 145, số dư là 12 biết thương khác 1, số chia và thương đều là số tự nhiên.
Bài 3: (2 điểm)
a) Chứng minh rằng khi và chỉ khi .
b) Gọi S(N) là tổng các chữ số của N. Tìm N biết N + S(N) = 94.
Bài 4: (3 điểm)
Cho các tia OB, OC thuộc cùng một nửa mặt phẳng có bờ chứa tia OA. Gọi OM là tia phân giác của BOC. Tính AOM biết rằng:
a) AOB =100 ; AOC = 600
b) AOB = m ; AOC = n (m > n)
c) Vẽ p tia chung gốc. Trong hình vẽ có bao nhiêu góc.
Bài 5: (1 điểm)
Chứng minh rằng tổng sau không là số chính phương:
Đề số 24
Bài 1: ( 2 điểm) Tính nhanh:
a) 
b) 
Bài 2: (2 điểm)
a) Chứng minh rằng: Nếu 3a + 4b + 5c chia hết cho 11 với giá trị tự nhiên nào đó của a, b, c thì biểu thức 9a + b + 4c với các giá trị đó của a, b, c cũng chia hết cho 11.
b) Từ các chữ số 1, 2, 3, 4, 5, 6 lập tất cả các chữ số khác nhau. Tìm ƯCLN của tất cả các số lập được.
Bài 3: (2 điểm)
1) Người ta lấy một tờ giấy xé thành 5 mảnh sau đó lại lấy một số mảnh này xé mỗi mảnh thành 5 mảnh nhỏ hơn. Hỏi sau một số lần xé liên tục như vậy ta có thể có được 2004 mảnh, 2005 mảnh hay không ?
2) Tìm số có hai chữ số khác nhau dạng sao cho cũng là số nguyên tố và hiệu là số chính phương.
Bài 4: (3 điểm) Cho đường thẳng x’x và một điểm O thuộc đường thẳng ấy. Hai điểm A, B nằm trong cùng một nửa của mặt phẳng bờ x’x và một điểm C nằm trong nửa mặt phẳng đối vủa nửa mặt phẳng bờ x’x có chứa điểm A.
Biết xOB = 1150; AOB = 750 ; x’OC = 400.
a) Chứng minh rằng OA nằm giữa hai tia OB, Ox.
b) Tính xOA, x’OB.
c) Chứng tỏ ba điểm A, O, C thẳng hàng.
Bài 5: (1 điểm) Tính giá trị của biểu thức: 
Đề số 25
Bài 1: (2 điểm) 
Cho 
a) Chứng minh: B chia hết cho 
b) Chứng minh: B - A chia hết cho 61.
Bài 2: (2 điểm)
a) Tìm x nguyên để nguyên.
b) So sánh A với 1, biết: 
Bài 3: (2 điểm) 
 Để trở hết một số hàng có thể dùng một ô tô lớn chở 12 chuyến hoặc một ô tô nhỏ chở 15 chuyến. Ô tô lớn chở một số chuyến rồi chuyển sang làm việc khác, ô tô nhỏ chở tiếp cho xong. Như vậy 2 xe chở tổng cộng 14 chuyến. Hỏi mỗi ô tô chở mấy chuyến?
Bài 4: (2 điểm) 
 Tìm hai số tự nhiên liên tiếp, trong đó có một số chia hết cho 9 và tổng của hai số đó là một số có đặc điểm sau:
Có 3 chữ số
Là một bội số của 5
Tổng của chữ số hàng trăm và chữ số hàng đơn vị chia hết cho 9
Tổng của chữ số hàng trăm và chữ hàng chục chia hết cho 4.
Bài 5: (2 điểm) 
 Cho góc AOB. Goi Ot là tia phân giác của góc AOB, Om là tia phân giác của góc AOt. Tìm giá trị lớn nhất của góc AOm.
Đề số 26
Bài 1: (5 điểm)
a) Biết rằng số chia hết cho 7, cho 11, cho 13. Tìm số đó ?
b) Bạn An nghĩ ra hai số tự nhiên liên tiếp trong đó có một số chia hết cho 9. Tổng của hai số đó là một số có đặc điểm sau:
1. Có ba chữ số
2. Là bội của số 5
3. Tổng chữ số hàng trăm và chữ số hàng đơn vị là một bội số của 9.
4. Tổng chữ số hàng trăm và chữ số hàng chục chia hết cho 4.
Hãy cho biết bạn An đã nghĩ ra số nào ?
Bài 2: (5 điểm)
a) Khi chia 1 số A cho 7 ta được một số dư là 6, còn khi chia nó cho 13 được số dư là 3, hỏi khi chia A cho 91 thì số dư là bao nhiêu ?
b) So sánh 231 và 321
Bài 3: (5 điểm) 
a) Chứng minh rằng nếu p và 2p + 1 là số nguyên tố lớn hơn 3 thì 4p + 1 là hợp số.
b) Cho p và p2 + 2 là các số nguyên tố. Chứng minh rằng p3 + 2 cũng là số nguyên tố.
Bài 4: (5 điểm)
 Hai thành phố A và B cách nhau 100km. Một người đi xe đạp từ A đến B và người khác đi xe đạp từ B đến A. Họ khởi hành cùng một lúc và 5 giờ sau thì gặp nhau. Nếu sau khi đi được 1 giờ 30 phút người đi xe đạp từ B dừng lại 40 phút rồi mới tiếp tục đi thì phải sau 5 giờ 22 phút kể lúc khởi hành họ mới gặp nhau. Tìm vận tốc của mỗi người.
Đề số 27
Bài 1: (2 điểm) Tính giá trị của biểu thức:
Bài 2: (2 điểm)
a) Tìm các số nguyên dương a và b sao cho: 
b) Cho các số nguyên dương a, b, x, y thoả mãn các đẳng thức: a + b = x + y;
ab + a = xy. Chứng tỏ rằng x = y.
Bài 3: (2 điểm)
Chứng minh rằng: 
Bài 4: (3 điểm)
Cho tam giác AOB gọi Ox là tia phân giác của góc AOB, tia Oy là phân giác của góc xOB.
a) Biết yOb = a0 . Tính AOB theo a0.
b) Gọi giao điểm của Ox với Oy và với AB lần lượt là C và D. Biết ; 
; AC = 13 cm. Tính AD; CD.
c) Lấy M, N lần lượt là trung điểm của AO, BO với các điểm O, M, N, A, B, C, D kẻ được bao nhiêu đường thẳng phân biệt đi qua các cặp điểm ? kể tên những đường thẳng đó.
Bài 5: (1 điểm)
 Tính 
Đề số 28
Bài 1: (2 điểm) Tính:
Bài 2: (2 điểm)
1) Một số tự nhiên khi cho 15 dư 5, chia cho 18 dư 17. Hỏi số đó khi chia cho 90 dư bao nhiêu ?
2) Trong tập hợp số tự nhiên có thể tìm được các số có dạng: 
200420042004000 chia hết cho 2005 hay không ?
Bài 3: (2 điểm) Chứng minh rằng luôn tìm được 2005 số tự nhiên liên tiếp đều là hợp số cả.
2) Tổng của 9 số tự nhiên khác 0 là 2005. Gọi d là ƯCLN của các số đó. Tìm giá trị lớn nhất của d.
Bài 4: (2 điểm)
Bạn An nói rằng có thể trồng 9 cây thành 10 hàng mỗi hàng có 3 cây. Hãy cho biết bạn An đã làm như thế nào ?
Bài 5: (2 điểm) 
 Tìm các số a, b, c nguyên dương thoả mãn :
 và 
Đề số 29
Bài 1: (2 điểm)
a) Tìm số tự nhiên a biết rằng 398 chia cho a thì dư 38, còn 450 chia cho a thì dư 18.
b) Tìm số tự nhiên a nhỏ nhất khác 0 sao cho khi nhân nó với , với ta đều được thương là các số tự nhiên.
Câu 2: (2 điểm)
a) Cho n là số tự nhiên. Chứng minh rằng: chia hết cho 10.
b) Tìm x biết: 
Câu 3: (2 điểm)
 Hai bạn Hồng và Hà đi mua 18 gói bánh và 12 gói kẹo để đến lớp liên hoan. Hồng đưa cho cô bán hàng 2 tờ 100000 đồng và được trả lại 72000 đồng. Hà nói: “Cô tính sai rồi”. Em hãy cho biết Hà nói đúng hay sai ? Giải thích tại sao ?
Bài 4: (3 điểm)
Trong hình vẽ bên:
a) Có bao nhiêu tam giác nhận EF làm cạnh ?
b) Có bao nhiêu góc có đỉnh là E ?
c) Nếu biết số đo của góc BDC bằng 600,
góc EDF bằng 500 thì tia DE có phải là
 tia phân giác của góc BDF không vì sao? 
Bài 5: (1 điểm)
Đề số 30
Bài 1: (3 điểm)
a) Tính 
b) Cho và 
So sánh B và C.
c) Tìm chữ số tận cùng của số (với n ẻ N)
Bài 2: (2 điểm)
 Tìm số tự nhiên nhỏ nhất chia cho 3 thì dư 1, chia cho 4 thì dư 2, chia cho 5 thì dư 3, chia cho 6 thì dư 4 và chia hết cho 13.
Bài 3: (2 điểm)
 Vào lúc 12 giờ hai kim phút và kim giờ trùng nhau. Hỏi sau ít nhất thời gian bao lâu kim phút và kim giờ lại trùng nhau ?
Bài 4: (2 điểm)
 Cho đoạn thẳng AB, điểm O thuộc tia đối của tia AB. Gọi M, N thứ tự là trung điểm của OA, OB.
a) Chứng tỏ OA < OB.
b) Trong 3 điểm M, O, N điểm nào nằm giữa hai điểm còn lại.
c) Chứng tỏ rằng độ dài của đoạn thẳng MN không phụ thuộc vào vị trí của điểm O.
Bài 5: (1điểm)
Chứng tỏ rằng số là tích hai số tự nhiên liên tiếp.

Tài liệu đính kèm:

  • docGIAO AN BDHSG 6.doc