Tìm chữ số tận cùng

Tìm chữ số tận cùng

A- PHƯƠNG PHÁP

1. Chữ số tận cùng của một tích

 - Tích các số lẻ là một số lẻ

 - Tích của một số chẵn với bất kỳ số tự nhiên nào cũng là một số chẵn

 * Đặc biệt:

 - Tích của một số có tận cùng là 5 với một số lẻ có chữ số tận cùng là 5

 - Tích của một số có tận cùng là 5 với một số chẵn có chữ số tận cùng là 0

 - Tích của một số có tận cùng là 0 với một số bất kỳ có chữ số tận cùng là 0

2. Chữ số tận cùng của một luỹ thừa

 - Các số tự nhiên có tận cùng bằng 0; 1; 5; 6 khi nâng lên luỹ thừa bất kỳ (khác 0) vẫn giữ nguyên chữ số tận cùng của nó

 - Các số tự nhiên có tận cùng bằng 3; 7; 9 khi nâng lên luỹ thừa 4n đều có chữ số tận cùng là 1

 - Các số tự nhiên có tận cùng bằng 2; 4; 8 khi nâng lên luỹ thừa 4n (khác 0) đều có chữ số tận cùng là 6

 - Các số tự nhiên có tận cùng bằng 4 hoặc 9 khi nâng lên luỹ thừa lẻ đều có chữ số tận cùng bằng chính nó, nâng lên luỹ thừa chẵn có chữ số tận cùng lần lượt là 6 và 1.

 

doc 3 trang Người đăng nguyenkhanh Lượt xem 2445Lượt tải 3 Download
Bạn đang xem tài liệu "Tìm chữ số tận cùng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tìm Chữ số tận cùng
A- Phương pháp
1. Chữ số tận cùng của một tích
	- Tích các số lẻ là một số lẻ
	- Tích của một số chẵn với bất kỳ số tự nhiên nào cũng là một số chẵn
	* Đặc biệt:
	- Tích của một số có tận cùng là 5 với một số lẻ có chữ số tận cùng là 5
	- Tích của một số có tận cùng là 5 với một số chẵn có chữ số tận cùng là 0
	- Tích của một số có tận cùng là 0 với một số bất kỳ có chữ số tận cùng là 0
2. Chữ số tận cùng của một luỹ thừa
	- Các số tự nhiên có tận cùng bằng 0; 1; 5; 6 khi nâng lên luỹ thừa bất kỳ (khác 0) vẫn giữ nguyên chữ số tận cùng của nó
	- Các số tự nhiên có tận cùng bằng 3; 7; 9 khi nâng lên luỹ thừa 4n đều có chữ số tận cùng là 1
	- Các số tự nhiên có tận cùng bằng 2; 4; 8 khi nâng lên luỹ thừa 4n (khác 0) đều có chữ số tận cùng là 6
	- Các số tự nhiên có tận cùng bằng 4 hoặc 9 khi nâng lên luỹ thừa lẻ đều có chữ số tận cùng bằng chính nó, nâng lên luỹ thừa chẵn có chữ số tận cùng lần lượt là 6 và 1.
3. Chú ý
	Một số chính phương thì không có tận cùng bằng 2; 3; 7; 8.
B- Bài tập
Dạng 1: Chữ số tận cùng của một luỹ thừa
Bài 1: Tìm chữ số tận cùng của các luỹ thừa sau:
	a) 110111	b) 5637	c) 131101	d) 7576	e) 97100	g) 8312	h) 10848	i) 182128	
	k) 6427	m) 1920 	n) 11444	o) 9999
	p) 5345	q) 107102	r) 7275	s) 128129
 t) (2345)42	x) (5796)35
Bài 2: Tìm hai chữ số tận cùng của số 5n (n > 1)
Bài 3: Tìm chữ số tận cùng của các số sau:
	a) 	b) 	c) 	d) 
Bài 4: Tìm hai chữ số tận cùng của các số sau:
	a) 5151 	b) (9999)99	c) 6666	d) 14101 .16101
Dạng 2: Chữ số tận cùng của một tích
Bài 1: Tìm chữ số tận cùng của các tích sau:
	a) 12534 . 12635	b) 20072006 . 20062007	c) 19991999 . 19981998	
Bài 2: Tích các số lẻ liên tiếp có tận cùng là 7. Hỏi tích đó có bao nhiêu thừa số? (Đ/s: 3)
Bài 3: Các số sau có tận cùng bằng bao nhiêu chữ số 0 ?
	a) A = ( 2. 22. 23. ... . 210 ). ( 52. 54. ... . 514 )
	b) B = 20 !
Dạng 3: Chữ số tận cùng của một tổng, hiệu
Bài 1: Tìm chữ số tận cùng của các tổng, hiệu sau:
	a) 75 53 - 21 54	b) 126 125 + 125 126
	c) 12591 + 12692	d) 7552 - 218 
	e) 132001 - 82001	g) 1999 2007 + 2003 2007 
	h) 357 100 - 468 100	i) 116 + 126 + 136 + 146 + 156 + 166
Bài 2: Chứng tỏ rằng các tổng, hiệu sau không chia hết cho 10
	a) A = 1998. 1996. 1994. 1992 - 1991. 1993. 1995. 1997
	b) B = 405 n + 2 405 + m 2 (m, n ẻ N* )
Bài 3: Chứng tỏ rằng:
	a) 8102 - 2102 chia hết cho 10.
	b) 175 + 244 - 313 chia hết cho 2 và 5.
Bài 4: Tìm chữ số tận cùng của:
	a) A = 2 + 22 + 2 3 + ... + 220 
	b) B = 1 + 2 + 22 + ... + 22007
	c) C = 1 + 3 + 32 + ... + 32007 
Bài 5: Cho S = 2. 1 + 2. 3 + 2. 3 2 + ... + 2. 3 2004
 	a) Thu gọn S
	b) Tìm chữ số tận cùng của S. Từ đó suy ra S không phải là số chính phương.
Bài 6: Chứng minh rằng với mọi số tự nhiên n thì:
	a) 74n - 1 chia hết cho 5
	b) 34n + 1 + 2 chia hết cho 5
	c) 24n + 1 + 3 chia hết cho 5
	d) 24n + 2 + 1 chia hết cho 5
	e) 92n + 1 + 1 chia hết cho 10
Bài 7: 
 a) Chứng tỏ rằng 175 + 244 - 1321 chia hết cho 10
 b) Cho A = 51n + 47102 (n ẻ N). Chứng tỏ rằng A chia hết cho 10
Bài 8: Tìm các số tự nhiên n để n100 + 5 chia hết cho 10.
Bài 9: Chứng minh rằng với mọi n ẻ N, n > 1 thì có chữ số tận cùng là 7.

Tài liệu đính kèm:

  • docChuyen de Tim chu so tan cung.doc