Chứng minh rằng :
3
4
4
3
4
1
2
2
0 6
1
1. dx
3 2 sin x 2
3 cotg 1
2. dx
12 x 3
1 1
3. dx
2 6 1 x
π
π
π
π
π π
−
π
−
∫
∫
∫
4
1 0
2
5 4 3
1
4. ln 2 dx
1 x x 4
1
5. dx
x x 1 8
x
6. dx
18 x x x 3 9 3
π
<>
+
π
+ +
π π
+ + +
∫
∫
∫
1 0
1 0
Bài giải :
3 3 3 3
4 4 4 4
4 4 4 4
2 2 2
2
2 2
3 1 1 1 1
1. x sin x 1 sin x 1 1 2 sin x 2 1 3 2 sin x 2 1
4 4 2 2 2 3 2 sin x
1 1 1
dx dx dx dx
2 3 2 sin x 4 3 2 sin x 2
π π π π
π π π π
π π
−
−
π π
− −
∫ ∫ ∫ ∫
⇒ ⇒ ⇒ ⇒ ⇒
⇒ ⇒
3 3 3
4 4 4
3
4
cotgx 1
3 cotgx 4 3 cotgx 4
2. x dx dx dx
4 3 1 4 x x
x
3 cot gx 1
dx
12 x 3
π π π
π π π
π π
??
π π ?
?
?π π π π
????π π
∫ ∫ ∫
∫
1 3
⇒ ⇒ ⇒
3
⇒
Bài toán này có thể giải theo phương pháp đạo hàm.
1 1
2 2
6 2 2 6 2 6 2 6
6 2 6 0
1
3. 0 x 1 0 x . x 1 1 x x 0 0 1 x 1 x 1 1 x 1 x 1
2
1 1 1
1 dx dx
1 x 1 x 1 x
I
<>< −="" −="" −="" −="" −="" −="">
− − −
∫ ∫0
⇒ ⇒ ⇒ ⇒
⇒ ⇒
Với
1
2
0 2
1
I = dx
∫ 1- x Đặt x sin t ; t ; dx cos tdt = − = ∈ ? ? ? ? ? ? ? ? ? ? ? ? π π 2 2 π π ⇒
1 1
2 2
0 0 2
x 0 12 cos tdt
I dt
t 0 1 sin t 6
6
π
= = =
π
−
⇒ ∫ ∫ Vậy 1 1 2 6 ∫01 2 1 x −6 dx π
4. 0 x 1 x x 1 x x x x 1 x 1 x x 1 x ⇒ ⇒ ⇒ 2 2 + + +
1 1 1 2 () 1 ; x 0,1 )[]
x 1 1 x + + 1 x x +
⇒ ∀ ∈
Dấu đẳng thức trong (1) xảy ra khi :
x = 0
x = 1
???
(1) (1)
(1) (1)
VT VG
x
VG VP ⇒ ∅
∈
Do đó :
1 1 1 1
2
0 0 0 0
1 1 dx 1
dx dx ln 2 dx
1 x x 1 4 1 x x 1 x x
π
<><><>
∫ ∫ ∫ ∫ + + + + ⇒
Chú ý :
1
2
0
1
dx
1 x 4
π
=
∫+Xem bài tập 5 .
Ts. Nguyễn Phú Khánh - ðà Lạt Chuyên Đề Bất Đẳng Thức Tích Phân 1 Chứng minh rằng : 3 4 4 3 4 1 2 2 60 1 1. dx 3 2 sin x 2 3 cotg 1 2. dx 12 x 3 1 1 3. dx 2 61 x π π π π π π − π − ∫ ∫ ∫ 4 1 0 2 5 4 3 1 4. ln 2 dx 41 x x 1 5. dx x x 1 8 x 6. dx 18 x x x 3 9 3 π < < + π + + π π + + + ∫ ∫ ∫ 1 0 1 0 Bài giải : 3 3 3 3 4 4 4 4 4 4 4 4 2 2 2 2 2 2 3 1 1 1 1 1. x sin x 1 sin x 1 1 2 sin x 2 1 3 2 sin x 2 1 4 4 2 2 3 2 sin x2 1 1 1 dx dx dx dx 2 3 2 sin x 4 3 2 sin x 2 π π π π π π π π π π − − π π − −∫ ∫ ∫ ∫ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ 3 3 3 4 4 4 3 4 cotgx 1 3 cotgx 4 3 cotgx 4 2. x dx dx dx 4 x x3 1 4 x 3 cotgx 1 dx 12 x 3 π π π π π π π π π π π π π π π π ∫ ∫ ∫ ∫ 1 3⇒ ⇒ ⇒ 3 ⇒ Bài toán này có thể giải theo phương pháp đạo hàm. 1 1 2 2 6 2 2 6 2 6 2 6 6 2 60 1 3. 0 x 1 0 x .... x 1 1 x x 0 0 1 x 1 x 1 1 x 1 x 1 2 1 1 1 1 dx dx 1 x 1 x 1 x I < < − − − − − − − − − − ∫ ∫0 ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ Với 1 2 20 1I = dx 1- x∫ Đặt x sin t ; t ; dx cos tdt 2 2 π π = − = ⇒ ∈ 1 1 2 2 20 0 1x 0 cos tdt2 I dt 6t 0 1 sin t6 π = = = π − ∫ ∫⇒ Vậy 1 2 60 1 1 dx 2 61 x π − ∫ 2 24. 0 x 1 x x 1 x x x x 1 x 1 x x 1 x+ + +⇒ ⇒ ⇒ ( ) [ ]2 1 1 1 1 ; x 0,1 x 1 1 x1 x x+ ++ ⇒ ∀ ∈ Dấu đẳng thức trong (1) xảy ra khi : x = 0 x = 1 (1) (1) (1) (1) VT VG x VG VP ∅⇒ ∈ Do đó : 1 1 1 1 20 0 0 0 1 1 dx 1 dx dx ln2 dx 1 x x 1 41 x x 1 x x π < < < < + ++ +∫ ∫ ∫ ∫ ⇒ Chú ý : 1 20 1 dx 1 x 4 π = +∫ Xem bài tập 5 . Ts. Nguyễn Phú Khánh - ðà Lạt Chuyên Đề Bất Đẳng Thức Tích Phân 2 2 2 2 2 2 2 2 2 1 1 1 2 2 20 0 0 1 1 5. 0 1 2 2 2 2 2( 1) 1 1 1 1 ; 2 2 1 1 + + + + + + + + = + + + +∫ ∫ ∫ ⇒ ⇒ ⇒ ⇒ ⇒ x x x x x x x x x x x x x dx dx I dx x x x x Đặt x tgt dx dt ( tg t)dt cos t = = = + 22 1 1⇒ π π+ π π = = = = π +∫ ∫ 4 4 2 20 0 0 1 1 1 4 40 4 ⇒ ⇒ x tg t I dt dt I tg tt Vậy π + +∫ 1 20 1 2 8 dx x x ( ) 5 3 5 4 3 3 5 4 3 3 4 3 3 5 4 3 3 3 5 4 3 3 3 5 4 3 3 1 1 1 3 30 0 6. 0 1 0 2 3 3 3 3 0 1 1 1 3 3 3 3 3 3 3 3 1 3 3 3 3 1 ; Đặt 3 3 3 1 + + + + + + + + + + + + + + + + + + + + + = = = + + ∫ ∫ ∫ ∫ ∫° 1 1 1 0 0 0 0 ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ x x x x x x x x x x x x x x x x x x x x x x x x x x x x x dx dx dx x x x x x x x I dx dx x x x 2 0 1;( 0) 2 0 =⇒ 1 x t t dx tdt t 21 1 1 6 3 20 0 1 2 2 3 . 3 1 9 ( ) 1 = = + +∫ ∫ t t dt I dt t t Đặt = =3 2 0 1 3 0 1 ⇒ t u t du t dt u π = = +∫ 1 1 20 2 9 1 18 ⇒ du I u Kết quả : π = 4 I (bài tập 5) π = = +∫ 1 2 30 ° 3 9 3 x I x (tương tự) Vậy ( ) + + +∫ 1 1 25 4 30 1 3 ⇔ x I dx I x x x π π + + +∫ 5 4 318 3 9 3 1 0 x dx x x x 1,Chứng minh rằng : ( ) ( ) 2 4 40 121 1+ +∫ sin .cos sin cos x x dx x x π π 2.Nếu : ( ) = > ∫ 4 0 0 , 0 , ; cos 2 4 ∀ ∈ t tg x I dx t x t π thì : ( ) 2 3 3 3 4 + + > tg t tgt tg t e π Bài giải : 1. Ta có cos x sin x sin x cos x : ( sin x)( cos x) ( sin x)( cos x) ( sin x)( cos x) + + + + = + + + + + + 2 2 4 4 4 4 4 4 4 4 3 2 2 1 1 1 1 1 1 sin cos ( sin )( cos ) ( sin )( cos ) sin cos + + + = + + + + + + + 4 4 4 4 4 4 4 4 3 1 1 1 1 1 1 1 1 1 1 ⇒ x x x x x x x x Ts. Nguyễn Phú Khánh - ðà Lạt Chuyên Đề Bất Đẳng Thức Tích Phân 3 sin . cos sin .cos sin . cos sin .cos sin sin ( sin )( cos ) sin cos ( sin )( cos ) sin cos sin . cos sin sin ( sin )( cos ) sin cos π π + + + + + + + + + + ++ + + + ∫ ∫ 2 2 4 4 4 4 4 4 4 4 4 4 4 40 0 3 1 2 2 1 1 1 1 1 1 6 1 1 3 1 2 2 1 1 6 1 1 ⇒ ⇒ ⇒ x x x x x x x x x x x x x x x x x x x x x x dx dx dx x x x x sin Đặt sin sin sin π π = = = + ∫ ∫ 2 2 0 2 1 40 2 ° 2 1 ⇒ x J dx t x dt xdx x π π ⇒ = = +∫ 1 1 20 0 2 0 1 41 x dt J t t (kết quả I= 4 π bài tập 5) sin Đặt cos sin cos π = = = − +∫ 2 2 2 40 2 ° 2 1 ⇒ x J dx u x du xdx x π π = = +∫ 1 2 20 0 2 0 1 4 ⇒ 1 x du J u u (kết quả I= 4 π bài tập 5) sin .cos ( ) ( sin )( cos ) π + + +∫ 2 4 40 1 1 1 6 ⇒ x x dx I J x x Vậy sin .cos ( sin )( cos ) π π + +∫ 2 4 40 1 1 12 x x dx x x 2. Đặt ( )= = + = + 2 21 1 ⇒ ⇒ dt t tgx dt tg x dx dx t 4 2 3 3 2 2 2 20 0 0 0 2 4 tgttgt tgt tgtt dt t dt 1 1 1 t -1 1 1 tgt -1I = . = = -t -1+ dt = - t - t - ln = - tg t - tgt - ln 1- t 1+ t 1- t 1- t 3 2 t +1 3 2 tgt +1 1+ t t ∫ ∫ ∫ Vì ( ) > 0 I t nên 31 1 tgt -1 : - tg t - tgt - ln > 0 3 2 tgt +1 ln ln +− π π = + > + + > + 3 3 31 1 1 1 2 1 2 4 3 4 2 3⇔ ⇒ tg t tgttgt tg t tg t tgt tg t e tgt 2 n x 1. I = x +1 Chứng minh : ( ) ≤ ≤ + +∫ 1 0 1 1 2 1 1n I dx n n và lim →+∞ = 0 n n I dx ( )-n xn2. J = x 1+ e Chứng minh : nJ dx n< +∫0 1 2 0 1 và n n lim J dx 0 →+∞ = Bài giải : . + + 1 1 1 0 1 1 1 2 1 2 1 ⇒ ⇒ x x x ; n n n n n nx x xx x dx dx x dx x x+ +∫ ∫ ∫ 1 1 1 0 0 0 1 2 1 2 1 ⇒ ( ) ( ) n n nnx x x x dx dx n x n n x n ++ + + + + +∫ ∫ 1 1 1 1 0 0 00 11 1 2 1 1 1 1 1 1 ⇒ ⇒ 2 +1 Ts. Nguyễn Phú Khánh - ðà Lạt Chuyên Đề Bất Đẳng Thức Tích Phân 4 Ta có : ( ) 1 0 2 1 0 11 0 1 →∞ →∞ →∞ = + = + = + nn n n lim n lim x lim n x ⇒ ( ) ( ) ( ) ( ) 0 1 0 0 0 11 2 0 1 1 1 1 2 1 2 0 1 2 2 0 1 2 0 1 1 − − − − − −= + + + + + +∫ ∫ ∫ . .⇒0 ⇒ ⇒ ⇒ ⇒ n n n n n n x n n x x x x xx e e e x x e x hay x e x x e dx x dx x e dx n Ta có : ( )2 0 1 0 1 − →∞ →∞ = + = + n x x e dx n lim lim⇒ n n Chứng minh rằng : 2 2 3 4 4 2 1 0 4 6 0 - 1. cosx(4 3 cos x)(2 cosx 2)dx 8 2. lnx(9 3 lnx 2 lnx)dx 8(e 1) 2 493. sinx(1 2 sinx)(5 3 sin x)dx 4. tgx(7 4 tgx)dx 3 64 2435. sin x. cos xdx 6250 π π π π π π − + ≤ π − − ≤ − π π + − < − ≤ π ≤ ∫ ∫ ∫ ∫ ∫ Bài giải : Đặt f(x) = cosx(4 - 3 cosx)(2 cosx + 2) cos x cos x cosxf(x) f(x)dx dx cosx( cosx)( cos x )dx2 2 2 2 2 2 3 4 3 2 2 8 3 8 4 3 2 2 8 − − − ⇒ ⇒ cauchy π π π π π π + − + + = − + π∫ ∫ ∫ 2. Đặt ( ) ln ( ln ln ) ln ( ln )( ln )9 3 2 3 3 2 f x x x x x x x= − − = + − ln ln ln( ) ( ) ln ( ln ln ) ( ) 1 1 1 3 3 3 2 8 3 8 9 3 2 8 1⇒ ⇒ e e e x x x f x f x dx dx x x x dx e + + + − = − − −∫ ∫ ∫ 3. Đặt ( ) sin ( sin )( sin )1 2 5 3 f x x x x= + − ; sin x sinx sinxf(x) 3 1 2 5 3 8 3 + + + − Đẳng thức sinx sin x sin x x sinx sinx sinx = + = − ⇔ ⇔ ⇔ ∈∅ = − = 1 2 1 5 3 4 5 f(x) f(x)dx dx sinx( sinx)( sin x)dx3 3 3 4 4 4 2 8 8 1 2 5 3 3 π π π π π π π ⇒ < ⇒ < ⇒ + − <∫ ∫ ∫ 4. Đặt f(x) tgx( tgx) . tgx( tgx)17 4 4 7 4 4 = − = − Ts. Nguyễn Phú Khánh - ðà Lạt Chuyên Đề Bất Đẳng Thức Tích Phân 5 ( ) ( ) 2 0 0 0 4 4 4 4 7 41 49 ( ) 4 2 16 49 49 7 4 16 16 x tgx tgx f x f dx dx tgx tgx dx ∏ ∏ ∏ + − ≤ = ∏ ⇒ ⇒ −∫ ∫ ∫ 4 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 6 4 6 0 5 5. sin .cos (1 cos ).(1 cos ).cos . cos . cos 1 (2 2cos )(1 cos ).cos .cos .cos 2 1 2 2cos 1 cos cos cos cos 2 5 243 243 sin .cos sin .cos 6250 6250 x x x x x x x x x x x x x x x x x x x x xdx = − − = − − − + − + + + ≤ ∏ ⇒ ≤ ⇒ ≤ ∏ ∫ Chứng minh rằng : ( )2 2 2 22 3 5 2 1. cos 3sin sin 3cos 3 x x x x dx − ∏ ∏ ∏ + + +∫ ( ) ( )2 2 1 2. 3 2 ln 5 2ln 4 1 e x x dx e+ + − −∫ 2 3 cos sin 3. 4 44 x x dx x ∏ + ∏ − +∫ Bài giải : 1. Đặt 2 2 2 2( ) 1 cos 3sin 1. sin 3cosxf x x x x= + + + ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 3 3 3 2 2 cos 3sin 3cos sin 2 2 5 2 2 2 cos 3sin sin 3cos 3 x x x f x x x x f f dx dx x x x x dx ∏ ∏ − − −∏ ∏ ∏ ∏ + + + ⇒ ∏ ⇒ ⇒ + + +∫ ∫ ∫ 2. Đặt ( ) 2 21 3 2ln 1 5 2ln x f x x= + + − ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 1 1 1 2 3 2ln 5 2 ln 4 4 3 2 ln 5 2 ln 4 1 x x x e ee f x x f f dx dx x x dx e ≤ + + − ⇒ ≤ ⇒ ⇒ + + − ≤ −∫ ∫ ∫ ( )2 2 2 2 2 2 20 0 2 2 3. 3 cos sin ( 3) 1 cos sin 3 cos sin 3 cos sin2 2 4 4 4 4 x x x x x x x x dx x x x x + ≤ + + + + ⇒ ≤ ⇒ ≤ + + + +∫ ∫ Ts. Nguyễn Phú Khánh - ðà Lạt Chuyên Đề Bất Đẳng Thức Tích Phân 6 Đặt ( )22 2 1x tgt dx tg t dt= ⇒ = + ( ) ( ) 2 2 20 0 0 2 20 0 4 4 2 2 2 2 10 1 1 4 2 84 10 4 3 cos sin 3 cos sin 4 4 4 4 4 tg tx dx dt dt x tg tt x x x x dx dx x x ∏ ∏+ ∏ ⇒ = = = ∏ + + + ∏ ∏ + ∏ ⇒ ⇒ − + + ∫ ∫ ∫ ∫ ∫ ĐÁNH GIÁ TÍCH PHÂN DỰA VÀO TẬP GIÁ TRỊ CỦA HÀM DƯỚI DẤU TÍCH PHÂN Chứng minh rằng : 2 2 0 0 0 0 2 2 1 1 441. sin 2 2 cos 2. sin 2 2 sin 1 2 1 3. 1 xdx xdx xdx xdx x x dx dx x x ∏ ∏ ∏∏ ≤ − − < + ∫ ∫ ∫ ∫ ∫ ∫ 2 2 0 2 2 2 1 1 0 0 4 4 sin sin 4.. 5. (ln ) ln 6. sin cos x x dx dx x x x dx xdx xdx xdx ∏ ∏ ∏ ∏ ∏ > < < ∫ ∫ ∫ ∫ ∫ ∫ Bài giải : ∏ ∏ 0 0 4 4 0 sin 1 1. 0; 2sin .cos 2cos 0 cos 14 sin2 2cos sin2 2 cos x x x x x x x x xdx xdx ≤ ≤ ∏ ∀ ∈ ⇒ ⇒ ≤ ≤ ≤ ⇔ ≤ ⇒ ≤∫ ∫ Ts. Nguyễn Phú Khánh - ðà Lạt Chuyên Đề Bất Đẳng Thức Tích Phân 7 ∏ ∏ 0 0 2 2 cos 1 2. 0; 2sin2 .cos 2sin 0 sin2 sin2 2sin sin2 2 sin x x x x x x x x xdx xdx ≤ ∏ ∀ ∈ ⇒ ⇒ ≤ ≤ ⇔ ≤ ⇒ ≤∫ ∫ [ ] 3. 1;2x∀ ∈ Xét hiệu : 2-1 2 1 1 0 1 ( 1) x x x x x x x x − − + − − = < + + 1 1 2 21 2 1 1 2 1 1 1 x x x x dx dx x x x x − − − − ⇒ < ⇒ < + +∫ ∫ 4. Đặt - -x u dx du=∏ ⇒ = ∏∏ ∏ 0∏ ∏ ∏ ∏ 0 2 22 sin sin( ) sin2 ( ) 02 1 1 0 0 2 x x u x dx du dx x u xu x x x x x ∏− ⇒ = − = ∏− ∏− ∏ < < ⇒ < <∏− ⇒ < ∏− ∫ ∫ ∫ Vì : ∏ ∏ ∏0 2 2sin sin sin sinsin 0 x x x x x dx dx x x x x > ⇒ < ⇒ < ∏− ∏−∫ ∫ ∏ ∏ ∏2 20 sin sinx x dx dx x x ⇒ >∫ ∫ 5. Hàm số y = f(x) = lnx liên tục trên ... 0 , 0, 2 Z x x Z x x ∏ = − ⇒ = − > ∀ ∈ ( ) ( ) ' 0 0 0 , 0, 2 x Z Z f x ∏ ⇒ > = ⇒ > ∀ ∈ x -∞ 0 2 ∏ +∞ f’(x) + f(x) 2∏ −∞ ր ( ) 2 2 2 0 0 0 2 22 22 2 1 x xtg f x x xtg tg dx dx dx x x ∏ ∏ ∏ ⇒ < ⇒ < ∏ ∏ ⇒ < ⇒ < ∏∫ ∫ ∫ Chứng minh rằng : ( ) ( ) 4 2001 2001 1999 2 0 1 2 0 2 0 1 1. . . 2 2001 2002 1 2 2. ln 1 ln 1 2 1 2 2 1 3. 2 4 x n n x e dx x x x dx xtg xdx n ∏ ∏ + ∏ ∏ > + + + + + − ∏ + ∫ ∫ ∫ Bài giải : 1. Trước hết ta chứng minh : ( )2 22 ; 0xe x x x> + ∀ > Xét hàm số: ( ) ( ) ( ) ( ) 2 2 ' 2 2 2 ; 0 2. 4 2 ; 4. 4 0 ; 0' ' x x x x x x f e x x x f e x f e x = − + ∀ > = − − = − > ∀ > ( ) ' x f⇒ là hàm tăng ( ) ( ) ' 0 ; 0 0 x x f f∀ > ⇒ > = ( )xf⇒ là hàm tăng ( ) ( )0; 0 xx f f∀ > ⇒ > Ts. Nguyễn Phú Khánh - ðà Lạt Chuyên Đề Bất Đẳng Thức Tích Phân 26 ( ) ( ) ( ) 2 2 1999 2 1999 2 1999 2 1999 2 0 0 2001 2001 1999 2 0 2 . 2. 1 . 2 1 . . 2 2001 2002 x x x x e x x x e x x x x e dx x x x dx x e dx ∏ ∏ ∏ ⇒ > + ⇒ > + ⇒ > + ∏ ∏ ⇒ > + ∫ ∫ ∫ 2. Trước hết ta chứng minh : ( )2 21 ln 1 1 ;x x x x x R+ + + + ∀ ∈ Xét hàm số : ( ) ( ) ( ) ( ) ( ) ( ) 2 2 ' 2 ' 2 22 1 ln 1 1 ln 1 0 1 1 1 0 0 1 1 x x x f x x x x f x x f x x x x x x = + + + − + = + + ⇒ = ⇔ + + = − ≥ ⇔ ⇔ = + = − và ( ) ( )' 20 ln 1 0 0xf x x x< ⇔ + + < ⇔ < x -∞ 0 +∞ f’(x) - 0 + f(x) 0 ց ր ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 2 2 2 2 1 1 1 2 2 2 2 0 0 0 1 2 0 0 ; 1 ln 1 1 ln 1 1 1 1 1 ln 1 1 1 1 ln 1 2 2 1 2 ln 1 ln 1 2 1 2 2 x f f x R x x x x x x x x x x x dx x dx x x x x x x x x dx ⇒ = ∀ ⇒ + + + + ⇒ + + + − ⇒ + + + − = + + + + − ⇒ + + + + − ∫ ∫ ∫ ∈ 3. Đặt ( ) ; 0, 4x f tgx x x ∏ = − ∀ ∈ ( ) ' 2 2 1 1 0 ; 0, cos 4 x f tg x x x ∏ = − = > ∀ ∈ ( )xf⇒ đồng biến trên ( ) ( )00, 04 x f f ∏ ⇒ = Ts. Nguyễn Phú Khánh - ðà Lạt Chuyên Đề Bất Đẳng Thức Tích Phân 27 4 4 4 1 1 0 2 0 ; 0, 4 1 2 4 n n n n n n n n tgx x x tg x x xtg x x xtg xdx x dx xtg xdx n ∏ ∏ ∏ + + 0 + ∏ ⇒ ∀ ∈ ⇒ ⇒ ⇒ ∏ ⇒ + ∫ ∫ ∫ Giả sử f(x) có đạo hàm liên tục trên [0,1] và f(1) – f(0) = 1 Chứng minh rằng : ( )( ) 21 ' 0 1 x f dx∫ Ta có : ( )( ) [ ] 21 ' 0 1 1 ; 0,1 x f dx x− ∀ ∈∫ ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( ) 2 21 1 ' ' ' 1 00 0 2 2 ' ' 2 1 0 2 1 0 2 1 0 1 x x x x x f dx f dx dx f dx f f f dx f dx 1 1 0 0 1 1 0 0 ⇒ − + ⇔ − − + ⇔ − + ⇒ ∫ ∫ ∫ ∫ ∫ ∫ Cho f là 1 hàm liên tục trên [0;1] đồng thời thoả mãn ( ) [ ] ( ) ( ) ( ) 1 0 1 2 ; ; 0,1 3 2 x x f x a f dx b ∀ ∈ = ∫ Chứng minh ( ) 1 0 2 1 3 3 4 x dx f <∫ Theo BĐT Bunhiacosky ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 1 1 1 1 0 0 0 0 1 0 1 1 1. . . 3 2 1 2 3 x x xx x x dx dx f dx f dx ff dx dx f f 1 0 = = ⇒ ∫ ∫ ∫ ∫ ∫ ∫ Dấu “=” không xảy ra : ( ) ( ) ( ) ( ) 1 0 3 1 2 3 . 2 x x x x f k f k f do f dx = ⇔ = = =∫ Từ (a) : ( ) [ ]1 2 ; 0,1xf x∀ ∈ thì ( ) ( ) 2 0 1 0 x x f f − − ( )( ) ( )( ) ( ) ( )22 1 0 3 2 0x x x xf f f f⇔ − − ⇔ − + Ts. Nguyễn Phú Khánh - ðà Lạt Chuyên Đề Bất Đẳng Thức Tích Phân 28 ( ) ( ) ( )23 0 2x x f f − + Đặt ( )xt f= 1 2t⇒ ≤ ≤ thì (2) ( ) 2 3 0 t t f t ⇔ − − = t 1 2 2 f’(t) − 0 + f(t) 2 2 3− ց ր ( ) ( ) ( ) ( ) ( ) 1 1 1 0 0 0 1 1 1 0 0 0 3 2 0 3 3 2 3 2 4 x x x x x dx f dx dx f dx dx dx f dx f f 1 0 ⇒ − + < ⇒ < − = ⇒ < ∫ ∫ ∫ ∫ ∫ ∫ ∫ Từ (1) và (2) suy ra : ( ) 2 1 3 3 4 x dx f <∫ Ts. Nguyễn Phú Khánh - ðà Lạt Chuyên Đề Bất Đẳng Thức Tích Phân 29 BÀI TẬP TỰ LUYỆN Chứng minh rằng : Ts. Nguyễn Phú Khánh - ðà Lạt Chuyên Đề Bất Đẳng Thức Tích Phân 30 ( ) 4 2 4 0 0 1 1 0 18 0 0 3 1 1 0 1 1. 228 245 2 cos 1 2. 2 183 4sin 2 1 2 3. 39 78 5 4. 3 616 cos 5 5. 4 61 1 6. 216 105 3cos .sin 7. 2 121 8. 3 2 4003 2001 9. . ln . 1 dx x dx x dx x x dx x x dx x dx x x e x dx ex x e dx x x dx ∏ ∏ ∏ ∏ − ∏ ∏ ∫ + ∏ ∏ ∫ + ∫ + <∫ + <∫ + ∏ ∏ ∫ + − ∏ <∫ + −+∫ < ∏∫1 10 24 ( ) 1 2 1 0 0 2 0 1 0 1 0 1 0 2 0 1 0 1 2 0. 2 36 84 1 1 11. 2, 3... 22 61 22 2 12. 2 4 7 1 13. 0 3 8 81 2 14.1 19 1 1 15. 3 6 2020 2 1 1 16 . 210 45 3cos 1 17. 0 1 1 dx x x dx n x x x e dx e e x dx x x e dx e x dx x dx x n x dx x n ∏ ∏ ∏ ∫ − − ∏ < =∫ ∏− − ∫ < <∫ + < <∫ < <∫ + ∏ ∏ ∫ − ∫ + + 1 2 3 0 1 0 1 0 3 4 4 1 1 1 0 1 0 0 1 0 1 3 18.1 2 52 8 2 19.1 1 2 2 20. 3 3 2 1 21. 2 8 73 sin 22. 2 5 4 6 2 23. 2 4 5 3 1 24. 2 18 82 1 1 25. 2004 42 1 26. 7 5 3 18 273 27. 0 dx x x x dx x dx dx x xdx x dx dx x x dx x x dx x x x ∏ ∏ − ∫ − + + +∫ +∫ ∏ ∏ ∫ + −∫ +∫ ∏ ∏ < <∫ + + ∏ ∫ − ∏ ∏ 3 <∫ + + + ( ) 4 1 0 1 0 0 3 0 2 0 2 0 1 1 3 4 1 0 2 ln 2 28. 9 81 10 2 2 29. 3 10 3 cos 7 1 62 30 . 1 sin 2 2 4 2 31. 0 2 3 1 32. 24 23 2 sin 21 33. 1 1 sin( ) 34. ln 2 1 cos( ) 35. ln 2 1 36 e x xdx e x dx dx x x dx tgx dx dx x x e e dx e nx dx x nx dx x ∏ ∏ − ∏ ∫ < + <∫ ∏ ∏∏< <∫ + ∏ ∏ < + <∫ < <∫ ∏∏ ∫ − − − < <∫ ∫ + ∫ + ( )20 1 2 1. ; 3, 4 2 121 2 37. sin 0 x dx n n x x dx ∏ ∏ < =∫ − >∫ Chứng minh rằng : Ts. Nguyễn Phú Khánh - ðà Lạt Chuyên Đề Bất Đẳng Thức Tích Phân 31 ( ) ( )( ) ( )( ) ( ) ( ) ( ) 2 2 2 3 6 4 0 4 2 2 0 2 4 2 0 2 2 1. 2 cos 2 cos 2 2 3cos 4sin 5 2. 0 1 12 9 3. 3 2 sin sin 6 sin 5 2 27 4. 2 3 7 4 4 25 5. sin 2 3cos 48 125 6. cos 2sin 3 54 3 3 7. 5 2cos 3 2sin x x dx x x dx x x x x dx tgx tgx tgx dx x x dx x x dx x x dx ∏ ∏ ∏ ∏ ∏ ∏ + + − ∏ + ∏ + ∏ − + + ∏ + − ∏ + < ∏ + < ∏ − + − ∫ ∫ ∫ ∫ ∫ ∫ o 3 1 < ( )( ) ( )( )( ) ( ) ( ) 2 4 4 2 0 3 6 0 1 1 0 1 20 2 27 8. sin 2 3 sin 7 4 sin 2 9 9. 3 2 sin 5 sin 1 sin 2 10. 2sin 0 11. 0 1 1 5 1 12. 2 1 24 2 x x x x x dx x x x dx x tgx dx e x dx e e dx x ∏ ∏− ∏ ∏ ∏ ∏ − − − ∏ + − ∏ − + + + > + − + + ∫ ∫ ∫ ∫ ∫ ∫ Chứng minh rằng : 2 2 2 2 18 40 2 0 1 2 2 2 0 2 1 2 1. 13 10 3cos 7 1 2. 14 4 3cos 8 cos 3. 0,1 1 4. 1 5. sin sin 6. x x dx x x x dx x x dx xdx x xdx x xdx e dx e dx ∏ 0 ∏ 0 1 1 0 ∏ ∏ + ∏ ∏ + < + + > < > ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ 1 0 2 2 1 1 ( ) 3 2 1 0 2 1 20 1 1 1 0 4 40 1 20 11 12 13 14 15 16 sin 1cos . 1 1 1 1 . 1 64 2 .1 2 4 .1 1 . 2 sin cos 1 . 2 8 x x x a a a dx x a R x dx x dx e dx e dx x x dx x x − ∏ + + − + ∏ − ∏ < < + ∏ ∏ + ∏ < + + ∫ ∫ ∫ ∫ ∫ ∫ ∈ Ts. Nguyễn Phú Khánh - ðà Lạt Chuyên Đề Bất Đẳng Thức Tích Phân 32 ( ) 2 1 21 10 22 2 0 0 cos 2 cos 7. 2 2 cos 1 0, 8.. sin sin x x dx x x xdx xdx α α α α − ∏ ∏ − + − + ∏ ∫ ∫ ∫ ∈ ( ) 4 4 2 2 1 2 5 3 19 17 18 . sin cos . 3 6 2 4 6 3 3 . 25 27 2 4 5 xdx xdx x x dx x dx x x ∏ ∏ − ∏ ∏ > + + −∫ ∫ − + ∫ ∫ ( ) ( ) 6 6 2 0 2 2 2 2 2 9. cos 2 sin sin 2 cos 6 2 2 2 10. 3cos sin 3sin cos 2 x x x x dx x x x x dx ∏ ∏ ∏ − + + + ∏∫ + + + ∏∫ Chứng minh rằng : ( ) ( ) 3 3 4 6 3 0 0 2 2 21 1 2 0 4 27 2 3. 0 1 3 sin 1 1. 4 2 3 sin 2 2. 8 6 3 1 2 3 4. 3 3cos cos 1 2 1 5. 5 1 2 2 3 6. 0 1 9 x x dx x dx x x x dx x x x dx x x x dx ∏ ∏ ∏ ∏ ∏ < − <∫ < < < < ∏ ∏ < < + + < < + < − < ∫ ∫ ∫ ∫ ∫ ( ) ( ) ( ) 2 2 3 2 0 0 2 2 2 2 1 1 33 1 1 2 1 0 2 0 30 28 29 31 32 33 5 3 . 24 5 20 2 32 cos 1 . 2 . 0 8 . 2 4 3 2 0 . 0 1 . 2cos 2cos 1 5 2 x e ex x x x dx x dx x x e dx e x x dx x dx e x x dx ∏ ∏ − − − − + − − − + +∫ < ∏ − − + − < < < + + < ∫ ∫ ∫ ∫ ∫ ( ) ( )2 2 11 7 22 0 5 2 6 1 20 1 0 2 49 3 8 1 1 9 sin sin sin sin 7 . 10 8 . 54 2 11 7 108 8 . 3cos 5 3cos cos3 . 0,65 0,9 1 2 1 1 11. 3 22 dxx x x x x x dx x dx x x dx x dx x x − ∏ ∏ ∏− −− − − − + + + + + + − ∫ ∫ ∫ ∫ ∫ ( ) ( ) ( ) ( ) 2 0 2 0 30 2 4 22 2 1 21 34 35 7 3 5 3 6 36 . 3 2 sin 3 3 37 38 39 40 3 . sin 1 cos 2 . sin cos 2 2 . cos 2 cos 2 3 . 2cot sin 9 7 5 . 2 6 5 7 3 1 . 0 10 1 x x dx x x dx x x dx x x dx x gx dx x x x dx x x x x dx x x ∏ ∏ −∏ ∏ −∏ ∏ ∏ − ∏ ∏ + < + < ∏ + < + < ∏ − < ∏ ∏ − < − + − − + + + − + ∫ ∫ ∫ ∫ ∫ ∫ ∫ Ts. Nguyễn Phú Khánh - ðà Lạt Chuyên Đề Bất Đẳng Thức Tích Phân 33 ( ) ( ) 2 2 3 2 2 200 100 2 4 2 2 2 21 1 0 17. 15 16 5 9 2 12. 2 41 cos 1 13. 200 1 sin 2 14. 2 2 1 . 2 3ln ln 2 1 . 5 1 2 1 1 2 e x dx x x dx x x dx x e e x dx x x dx x x x dx ∏ ∏ ∏ ∏ < < − < ∏ < < − < − < < + − < ∫ ∫ ∫ ∫ ∫ ∫ ( ) ( ) 2 2 21 2 22 2 0 2 3 2 21 3 1 2 2 4 0 2 2 1 24 22 23 25 26 27 5 2 4 5 21. 15 2 1 . 0 ln . 1 1 ln 5 2 . 1 4 1 1 . ln 2 ln ln 3 2 . 2 1 . 2 e e e x x x x x dx x x x e x e e dx e e x x dx x x dx x e dx e e e e dx e x − − + + + − < < − < < + + < < < < < < ∫ ∫ ∫ ∫ ∫ ∫ ∫ ( ) ( ) 2 2 4 2 0 2 4 3 2 1 18 19 20 . cos 2 cos 1 2 . 5 2 4 5 9 2 . 141 3 8 30 72 20 369 x x dx x x dx x x x x dx ∏ ∏ − ∏ − + ∏ − + + − − − + + − ∫ ∫ ∫
Tài liệu đính kèm: