Giáo án tự chọn môn Số học Lớp 6 - Trần Thị Kim Ánh

Giáo án tự chọn môn Số học Lớp 6 - Trần Thị Kim Ánh

A> MỤC TIÊU

- Ôn tập lại các tính chất của phép cộng và phép nhân, phép trừ và phép chia.

- Rèn luyện kỹ năng vận dụng các tính chất trên vào các bài tập tính nhẩm, tính nhanh và giải toán một cách hợp lý.

- Vận dụng việc tìm số phần tử của một tập hợp đã được học trước vào một số bài toán.

- Hướng dẫn HS cách sử dụng máy tính bỏ túi.

- Giới thiệu HS về ma phương.

B> NỘI DUNG

I. Ôn tập lý thuyết.

Câu 1: Phép cộng và phép nhân có những tính chất cơ bản nào?

Câu 2: Phép trừ và phép chia có những tính chất cơ bản nào?

II. Bài tập

Dạng 1: Các bài toán tính nhanh

Bài 1: Tính tổng sau đây một cách hợp lý nhất.

a/ 67 + 135 + 33

b/ 277 + 113 + 323 + 87

ĐS: a/ 235 b/ 800

Bài 2: Tính nhanh các phép tính sau:

a/ 8 x 17 x 125

b/ 4 x 37 x 25

ĐS: a/ 17000 b/ 3700

Bài 3: Tính nhanh một cách hợp lí:

a/ 997 + 86

b/ 37. 38 + 62. 37

c/ 43. 11; 67. 101; 423. 1001

d/ 67. 99; 998. 34

Hướng dẫn

a/ 997 + (3 + 83) = (997 + 3) + 83 = 1000 + 80 = 1083

Sử dụng tính chất kết hợp của phép cộng.

Nhận xét: 997 + 86 = (997 + 3) + (86 -3) = 1000 + 83 = 1083. Ta có thể thêm vào số hạng này đồng thời bớt đi số hạng kia với cùng một số.

b/ 37. 38 + 62. 37 = 37.(38 + 62) = 37.100 = 3700.

Sử dụng tính chất phân phối của phép nhân đối với phép cộng.

c/ 43. 11 = 43.(10 + 1) = 43.10 + 43. 1 = 430 + 43 = 4373.

67. 101= 6767

423. 1001 = 423 423

d/ 67. 99 = 67.(100 – 1) = 67.100 – 67 = 6700 – 67 = 6633

998. 34 = 34. (100 – 2) = 34.100 – 34.2 = 3400 – 68 = 33 932

 

doc 35 trang Người đăng lananh572 Lượt xem 546Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án tự chọn môn Số học Lớp 6 - Trần Thị Kim Ánh", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Chủ đề: TẬP HỢP
(Thời gian thực hiện: 2 tiết)
MỤC TIÊU
- Rèn HS kỉ năng viết tập hợp, viết tập hợp con của một tập hợp cho trước, sử dụng đúng, chính xác các kí hiệu .
- Sự khác nhau giữa tập hợp 
- Biết tìm số phần tử của một tập hợp được viết dưới dạng dãy số cóquy luật.
- Vận dụng kiến thức toán học vào một số bài toán thực tế.
NỘI DUNG
I. Ôn tập lý thuyết.
Câu 1: Hãy cho một số VD về tập hợp thường gặp trong đời sống hàng ngày và một số VD về tập hợp thường gặp trong toán học?
Câu 2: Hãy nêu cách viết, các ký hiệu thường gặp trong tập hợp.
Câu 3: Một tập hợp có thể có bao nhiêu phần tử?
Câu 4: Có gì khác nhau giữa tập hợp và ?
II. Bài tập
Dạng 1: Rèn kĩ năng viết tập hợp, viết tập hợp con, sử dụng kí hiệu
Bài 1: Cho tập hợp A là các chữ cái trong cụm từ “Thành phố Hồ Chí Minh”
Hãy liệt kê các phần tử của tập hợp A.
Điền kí hiệu thích hợp vào ô vuông
b ý A	;	c ý A	;	h ý A
Hướng dẫn
a/ A = {a, c, h, I, m, n, ô, p, t}
b/ 	
Lưu ý HS: Bài toán trên không phân biệt chữ in hoa và chữ in thường trong cụm từ đã cho.
Bài 2: Cho tập hợp các chữ cái X = {A, C, O}
a/ Tìm chụm chữ tạo thành từ các chữ của tập hợp X.
b/ Viết tập hợp X bằng cách chỉ ra các tính chất đặc trưng cho các phần tử của X.
Hướng dẫn
a/ Chẳng hạn cụm từ “CA CAO” hoặc “CÓ CÁ”
b/ X = {x: x-chữ cái trong cụm chữ “CA CAO”}
Bài 3: Chao các tập hợp
A = {1; 2; 3; 4; 5; 6} ; B = {1; 3; 5; 7; 9}
a/ Viết tập hợp C các phần tử thuộc A và không thuộc B.
b/ Viết tập hợp D các phần tử thuộc B và không thuộc A.
c/ Viết tập hợp E các phần tử vừa thuộc A vừa thuộc B.
d/ Viết tập hợp F các phần tử hoặc thuộc A hoặc thuộc B.
Hướng dẫn:
a/ C = {2; 4; 6} 
b/ D = {5; 9} 
c/ E = {1; 3; 5} 
d/ F = {1; 2; 3; 4; 5; 6; 7; 8; 9} 
Bài 4: Cho tập hợp A = {1; 2; a; b} 
a/ Hãy chỉ rõ các tập hợp con của A có 1 phần tử.
b/ Hãy chỉ rõ các tập hợp con của A có 2 phần tử.
c/ Tập hợp B = {a, b, c} có phải là tập hợp con của A không?
Hướng dẫn
a/ {1} { 2} { a } { b} 
b/ {1; 2} {1; a} {1; b} {2; a} {2; b} { a; b} 
c/ Tập hợp B không phải là tập hợp con của tập hợp A bởi vì c nhưng c 
Bài 5: Cho tập hợp B = {x, y, z} . Hỏi tập hợp B có tất cả bao nhiêu tập hợp con?
Hướng dẫn
- Tập hợp con của B không có phần từ nào là .
- Tập hợp con của B có 1phần từ là {x} { y} { z } 
- Các tập hợp con của B có hai phần tử là {x, y} { x, z} { y, z } 
- Tập hợp con của B có 3 phần tử chính là B = {x, y, z} 
Vậy tập hợp A có tất cả 8 tập hợp con.
Ghi chú. Một tập hợp A bất kỳ luôn có hai tập hợp con đặc biệt. Đó là tập hợp rỗng và chính tập hợp A. Ta quy ước là tập hợp con của mỗi tập hợp.
Bài 6: Cho A = {1; 3; a; b} ; B = {3; b} 
Điền các kí hiệu thích hợp vào ô vuông
1 ý A	;	3 ý A	;	3 ý B	;	B ý A
Bài 7: Cho các tập hợp
 ; 
Hãy điền dấu hayvào các ô dưới đây
N ý N*	;	A ý B	
Dạng 2: Các bài tập về xác định số phần tử của một tập hợp
Bài 1: Gọi A là tập hợp các số tự nhiên có 3 chữ số. Hỏi tập hợp A có bao nhiêu phần tử?
Hướng dẫn:
Tập hợp A có (999 – 100) + 1 = 900 phần tử.
Bài 2: Hãy tính số phần tử của các tập hợp sau:
a/ Tập hợp A các số tự nhiên lẻ có 3 chữ số.
b/ Tập hợp B các số 2, 5, 8, 11, , 296.
c/ Tập hợp C các số 7, 11, 15, 19, , 283.
Hướng dẫn
a/ Tập hợp A có (999 – 101):2 +1 = 450 phần tử.
b/ Tập hợp B có (296 – 2 ): 3 + 1 = 99 phần tử.
c/ Tập hợp C có (283 – 7 ):4 + 1 = 70 phần tử.
Cho HS phát biểu tổng quát:
Tập hợp các số chẵn từ số chẵn a đến số chẵn b có (b – a) : 2 + 1 phần tử.
Tập hợp các số lẻ từ số lẻ m đến số lẻ n có (n – m) : 2 + 1 phần tử.
Tập hợp các số từ số c đến số d là dãy số các đều, khoảng cách giữa hai số liên tiếp của dãy là 3 có (d – c ): 3 + 1 phần tử.
Bài 3: Cha mua cho em một quyển số tay dày 256 trang. Để tiện theo dõi em đánh số trang từ 1 đến 256. HỎi em đã phải viết bao nhiêu chữ số để đánh hết cuốn sổ tay?
Hướng dẫn:
- Từ trang 1 đến trang 9, viết 9 số.
- Từ trang 10 đến trang 99 có 90 trang, viết 90 . 2 = 180 chữ số.
- Từ trang 100 đến trang 256 có (256 – 100) + 1 = 157 trang, cần viết 157 . 3 = 471 số.
Vậy em cần viết 9 + 180 + 471 = 660 số.
Bài 4: Các số tự nhiên từ 1000 đến 10000 có bao nhiêu số có đúng 3 chữ số giống nhau.
Hướng dẫn:
- Số 10000 là số duy nhất có 5 chữ số, số này có hơn 3 chữ số giống nhau nên không thoả mãn yêu cầu của bài toán.
Vậy số cần tìm chỉ có thể có dạng: , , , với a b là cá chữ số.
- Xét số dạng , chữ số a có 9 cách chọn ( a 0) có 9 cách chọn để b khác a.
Vậy có 9 . 8 = 71 số có dạng .
Lập luận tương tự ta thấy các dạng còn lại đều có 81 số. Suy ta tất cả các số từ 1000 đến 10000 có đúng 3 chữ số giống nhau gồm 81.4 = 324 số.
IV/Cuûng coá baøi giaûng:
V/Baøi taäp veà nhaø – Daën doø:
Chủ đề : 	PHÉP CỘNG VÀ PHÉP NHÂN 
 PHÉP TRỪ VÀ PHÉP CHIA	
 (Thời gian thực hiện: 4 tiết)
MỤC TIÊU
- Ôn tập lại các tính chất của phép cộng và phép nhân, phép trừ và phép chia.
- Rèn luyện kỹ năng vận dụng các tính chất trên vào các bài tập tính nhẩm, tính nhanh và giải toán một cách hợp lý.
- Vận dụng việc tìm số phần tử của một tập hợp đã được học trước vào một số bài toán.
- Hướng dẫn HS cách sử dụng máy tính bỏ túi.
- Giới thiệu HS về ma phương.
NỘI DUNG
I. Ôn tập lý thuyết.
Câu 1: Phép cộng và phép nhân có những tính chất cơ bản nào?
Câu 2: Phép trừ và phép chia có những tính chất cơ bản nào?
II. Bài tập
Dạng 1: Các bài toán tính nhanh
Bài 1: Tính tổng sau đây một cách hợp lý nhất.
a/ 67 + 135 + 33
b/ 277 + 113 + 323 + 87
ĐS: a/ 235	b/ 800
Bài 2: Tính nhanh các phép tính sau:
a/ 8 x 17 x 125
b/ 4 x 37 x 25
ĐS: a/ 17000	b/ 3700
Bài 3: Tính nhanh một cách hợp lí:
a/ 997 + 86
b/ 37. 38 + 62. 37
c/ 43. 11; 67. 101; 423. 1001
d/ 67. 99; 998. 34
Hướng dẫn
a/ 997 + (3 + 83) = (997 + 3) + 83 = 1000 + 80 = 1083
Sử dụng tính chất kết hợp của phép cộng.
Nhận xét: 997 + 86 = (997 + 3) + (86 -3) = 1000 + 83 = 1083. Ta có thể thêm vào số hạng này đồng thời bớt đi số hạng kia với cùng một số.
b/ 37. 38 + 62. 37 = 37.(38 + 62) = 37.100 = 3700.
Sử dụng tính chất phân phối của phép nhân đối với phép cộng.
c/ 43. 11 = 43.(10 + 1) = 43.10 + 43. 1 = 430 + 43 = 4373.
67. 101= 6767
423. 1001 = 423 423
d/ 67. 99 = 67.(100 – 1) = 67.100 – 67 = 6700 – 67 = 6633
998. 34 = 34. (100 – 2) = 34.100 – 34.2 = 3400 – 68 = 33 932
Bái 4: Tính nhanh các phép tính:
a/ 37581 – 9999
b/ 7345 – 1998
c/ 485321 – 99999
d/ 7593 – 1997
Hướng dẫn:
a/ 37581 – 9999 = (37581 + 1 ) – (9999 + 1) = 37582 – 10000 = 89999 (cộng cùng một số vào số bị trừ và số trừ
b/ 7345 – 1998 = (7345 + 2) – (1998 + 2) = 7347 – 2000 = 5347
c/ ĐS: 385322	
d/ ĐS: 5596
Dạng 2: Các bài toán có liên quan đến dãy số, tập hợp
Bài 1: Tính 1 + 2 + 3 +  + 1998 + 1999
Hướng dẫn
- Áp dụng theo cách tích tổng của Gauss
- Nhận xét: Tổng trên có 1999 số hạng
Do đó 
S = 1 + 2 + 3 +  + 1998 + 1999 = (1 + 1999). 1999: 2 = 2000.1999: 2 = 1999000
Bài 2: Tính tổng của:
a/ Tất cả các số tự nhiên có 3 chữ số.
b/ Tất cả các số lẻ có 3 chữ số.
Hướng dẫn:
a/ S1 = 100 + 101 +  + 998 + 999 
Tổng trên có (999 – 100) + 1 = 900 số hạng. Do đó
S1= (100+999).900: 2 = 494550
b/ S2 = 101+ 103+  + 997+ 999 
Tổng trên có (999 – 101): 2 + 1 = 450 số hạng. Do đó
S2 = (101 + 999). 450 : 2 = 247500
Bài 3: Tính tổng
a/ Tất cả các số: 2, 5, 8, 11, , 296
b/ Tất cả các số: 7, 11, 15, 19, , 283
ĐS: 	a/ 14751
	b/ 10150 
Các giải tương tự như trên. Cần xác định số các số hạng trong dãy sô trên, đó là những dãy số cách đều.
Bài 4: Cho dãy số:
a/ 1, 4, 7, 10, 13, 19.
b/ 5, 8, 11, 14, 17, 20, 23, 26, 29.
c/ 1, 5, 9, 13, 17, 21, 
Hãy tìm công thức biểu diễn các dãy số trên.
ĐS:
a/ ak = 3k + 1 với k = 0, 1, 2, , 6
b/ bk = 3k + 2 với k = 0, 1, 2, , 9
c/ ck = 4k + 1 với k = 0, 1, 2,  hoặc ck = 4k + 1 với k N
Ghi chú: Các số tự nhiên lẻ là những số không chia hết cho 2, công thức biểu diễn là , k N
Các số tự nhiên chẵn là những số chia hết cho 2, công thức biểu diễn là , k N
Dạng 3: Ma phương 
9
19
5
7
11
15
17
3
10
Cho bảng số sau:
Các số đặt trong hình vuông có tính chất rất đặc biệt. đó là tổng các số theo hàng, cột hay đường chéo đều bằng nhau. Một bảng ba dòng ba cột có tính chất như vậy gọi là ma phương cấp 3 (hình vuông kỳ diệu)
15
10
12
Bài 1: Điền vào các ô còn lại để được một ma phương cấp 3 có tổng các số theo hàng, theo cột bằng 42.
15
10
17
16
14
12
11
18
13
Hướng dẫn:
4
9
2
3
5
7
8
1
6
1
4
2
7
5
3
8
6
9
Bài 2: Điền các số 1, 2, 3, 4, 5, 6, 7, 8, 9 vào bảng có 3 dòng 3 cột để được một ma phương cấp 3?
Hướng dẫn: Ta vẽ hình 3 x 3 = 9 và đặt thêm 4o ô phụ vào giữa các cạnh hình vuông và ghi lại lần lượt các số vào các ô như hình bên trái. Sau đó chuyển mỗi số ở ô phụ vào hình vuông qua tâm hình vuông như hình bên phải.
8
9
24
36
12
4
6
16
18
Bài 3: Cho bảng sau
10
a
50
100
b
c
d
e
40
Ta có một ma phương cấp 3 đối với phép nhân. Hãy điền tiếp vào các ô trống còn lại để có ma phương? 
ĐS: a = 16, b = 20, c = 4, d = 8, e = 25
IV/Cuûng coá baøi giaûng:
V/Baøi taäp veà nhaø – Daën doø:
Chủ đề : 	LUỸ THỪA VỚI SỐ MŨ TỰ NHIÊN	
(Thời gian thực hiện: 4 tiết)
A> MỤC TIÊU
- Ôn lại các kiến thức cơ bản về luỹ thừa với số mũ tự nhiên như: Lũy thừa bậc n của số a, nhân, chia hai luỹ thừa cùng có số, 
- Rèn luyện tính chính xác khi vận dụng các quy tắc nhân, chia hai luỹ thừa cùng cơ số
- Tính bình phương, lập phương của một số. Giới thiệu về ghi số cho máy tính (hệ nhị phân).
- Biết thứ tự thực hiện các phép tính, ước lượng kết quả phép tính.
B> NỘI DUNG
I. Ôn tập lý thuyết.
1. Lũy thừa bậc n của số a là tích của n thừa số bằng nhau, mỗi thừa số bằng a
n thừa số a
 ( n 0). a gọi là cơ số, no gọi là số mũ.
2. Nhân hai luỹ thừa cùng cơ số 
3. Chia hai luỹ thừa cùng cơ số ( a0, m n)
Quy ước a0 = 1 ( a0)
4. Luỹ thừa của luỹ thừa 
5. Luỹ thừa một tích 
6. Một số luỹ thừa của 10:
- Một nghìn: 	1 000 = 103
- Một vạn: 	10 000 = 104
- Một triệu: 	1 000 000 = 106
- Một tỉ: 	1 000 000 000 = 109
n thừa số 0 
Tổng quát: nếu n là số tự nhiên khác 0 thì: 10n = 
II. Bài tập
Dạng 1: Các bài toán về luỹ thừa
Bài 1: Viết các tích sau đây dưới dạng một luỹ thừa của một số:
a/ A = 82.324
b/ B = 273.94.243
ĐS: a/ A = 82.324 = 26.220 = 226. hoặc A = 413
b/ B = 273.94.243 = 322
Bài 2: Tìm các số mũ n sao cho luỹ thừa 3n thảo mãn điều kiện: 25 < 3n < 250
Hướng dẫn
Ta có: 32 = 9, 33 = 27 > 25, 34 = 41, 35 = 243 250
Vậy với số mũ n = 3,4,5 ta có 25 < 3n < 250
Bài 3: So sách các cặp số sau:
a/ A = 275 và B = 2433
b/ A = 2 300 và B = 3200
Hướng dẫn
a/ Ta có A = 275 = (33)5 = 315 và B = (35)3 = ... hỏ hơn 0.
ĐS: Các câu sai: d/
Bài 4: a/ Sắp xếp các số nguyên sau theo thứ tự tăng dần
2, 0, -1, -5, -17, 8
b/ Sắp xếp các số nguyên sau theo thứ tự giảm dần
-103, -2004, 15, 9, -5, 2004
Hướng dẫn
a/ -17. -5, -1, 0, 2, 8
b/ 2004, 15, 9, -5, -103, -2004
Bài 5: Trong các cách viết sau, cách viết nào đúng?
a/ -3 < 0
b/ 5 > -5
c/ -12 > -11
d/ |9| = 9
e/ |-2004| < 2004
f/ |-16| < |-15|
ĐS: Các câu sai: c/ e/ f/
Bài 6: Tìm x biết:
a/ |x – 5| = 3
b/ |1 – x| = 7
c/ |2x + 5| = 1
Hướng dẫn
a/ |x – 5| = 3 nên x – 5 = ± 3
x – 5 = 3 x = 8
x – 5 = -3 x = 2
b/ |1 – x| = 7 nên 1 – x = ± 7
1 – x = 7 x = -6
1 – x = -7 x = 8
c/ x = -2, x = 3
Bài 7: So sánh
a/ |-2|300 và |-4|150 
b/ |-2|300 và |-3|200
 Hướng dẫn
a/ Ta có |-2|300 = 2300
| -4 |150 = 4150 = 2300 Vậy |-2|300 = |-4|150 
b/ |-2|300 = 2300 = (23)100 = 8100
 -3|200 = 3200 = (32)100 = 9100
Vì 8 < 9 nên 8100 < 9100 suy ra |-2|300 < |-3|200 
Chủ đề: CỘNG, TRỪ HAI SỐ NGUYÊN
Thời gian thực hiện: 6 tiết.
A> MỤC TIÊU
- ÔN tập HS về phép cộng hai số nguyên cùng dấu, khác dấu và tính chất của phép cộng các số nguyên
- HS rèn luyện kỹ năng trừ hai số nguyên: biến trừ thành cộng, thực hiện phép cộng.
- Rèn luyện kỹ năng tính toán hợp lý, biết cách chuyển vế, quy tắc bỏ dấu ngoặc.
B> NỘI DUNG
I. Câu hỏi ôn tập lí thuyết:
Câu 1: Muốn cộng hai số nguyên dương ta thực hiện thế nằo? Muốn cộng hai số nguyên âm ta thực hiện thế nào? Cho VD?
Câu 2: Nếu kết quả tổng của hai số đối nhau? Cho VD?
Câu 3: Muốn cộng hai số nguyên khác dấu không đối nhau ta làm thế nào?
Câu 4: Phát biểu quy tắc phép trừ số nguyên. Viết công thức.
II. Bài tập 
Dạng 1:
Bài 1: Trong các câu sau câu nào đúng, câu nào sai? Hãy chưũa câu sai thành câu đúng.
a/ Tổng hai số nguyên dương là một số nguyên dương.
b/ Tổng hai số nguyên âm là một số nguyên âm.
c/ Tổng của một số nguyên âm và một số nguyên dương là một số nguyên dương.
d/ Tổng của một số nguyên dương và một số nguyên âm là một số nguyên âm.
e/ Tổng của hai số đối nhau bằng 0.
Hướng dẫn
a/ b/ e/ đúng
c/ sai, VD (-5) + 2 = -3 là số âm.
Sửa câu c/ như sau:
Tổng của một số nguyên âm và một số nguyên dương là một số nguyên dương khi và chỉ khi giá trị tuyệt đối của số dương lớn hơn giá trị tuyệt đối của số âm.
d/ sai, sửa lại như sau:
Tổng của một số dương và một số âm là một số âm khi và chỉ khi giá trị tuyệt đối của số âm lớn hơn giá trị tuyệt đối của số dương.
Bài 2: Điền số thích hợp vào ô trống
(-15) + ý = -15;	(-25) + 5 = ý
(-37) + ý = 15;	ý + 25 = 0
Hướng dẫn
(-15) + = -15;	(-25) + 5 = 
(-37) + = 15;	 + 25 = 0
Bài 3: Tính nhanh:
a/ 234 - 117 + (-100) + (-234)
b/ -927 + 1421 + 930 + (-1421)
ĐS: a/ 17	b/ 3
Bài 4: Tính:
a/ 11 - 12 + 13 – 14 + 15 – 16 + 17 – 18 + 19 – 20
b/ 101 – 102 – (-103) – 104 – (-105) – 106 – (-107) – 108 – (-109) – 110
Hướng dẫn
a/ 11 - 12 + 13 – 14 + 15 – 16 + 17 – 18 + 19 – 20 
= [11 + (-12)] + [13 + (-14)] + [15 + (-16)] + [17 + (-18)] + [19 + (-20)]
= (-1) + (-1) + (-1) + (-1) + (-1) = -5
b/ 101 – 102 – (-103) – 104 – (-105) – 106 – (-107) – 108 – (-109) – 110
= 101 – 102 + 103 – 104 + 105 – 106 + 107 – 108 + 109 – 110
= (-1) + (-1) + (-1) + (-1) + (-1) = -5
Bài 5: Thực hiện phép trừ
a/ (a – 1) – (a – 3)
b/ (2 + b) – (b + 1)	Với a, b 
Hướng dẫn
a/ (a – 1) – (a – 3) = (a – 1) + (3 - a) = [a + (-a)] + [(-1) + 3] = 2
b/ Thực hiện tương tự ta được kết quả bằng 1.
Bài 6: a/ Tính tổng các số nguyên âm lớn nhất có 1 chữ số, có 2 chữ số và có 3 chữ số.
b/ Tính tổng các số nguyên âm nhỏ nhất có 1 chữ số, có 2 chữ số và có 3 chữ số.
c/ Tính tổng các số nguyên âm có hai chữ số.
Hướng dẫn
a/ (-1) + (-10) + (-100) = -111
b/ (-9) + (-99) = (-999) = -1107
Bài 7: Tính tổng:
a/ (-125) +100 + 80 + 125 + 20
b/ 27 + 55 + (-17) + (-55)
c/ (-92) +(-251) + (-8) +251
d/ (-31) + (-95) + 131 + (-5)
Bài 8: Tính các tổng đại số sau:
a/ S1 = 2 -4 + 6 – 8 +  + 1998 - 2000
b/ S2 = 2 – 4 – 6 + 8 + 10- 12 – 14 + 16 +  + 1994 – 1996 – 1998 + 2000
Hướng dẫn
a/ S1 = 2 + (-4 + 6) + ( – 8 + 10) +  + (-1996 + 1998) – 2000
= (2 + 2 +  + 2) – 2000 = -1000
Cách 2:
S1 = ( 2 + 4 + 6 +  + 1998) – (4 + 8 +  + 2000)
= (1998 + 2).50 : 2 – (2000 + 4).500 : 2 = -1000
b/ S2 = (2 – 4 – 6 + 8) + (10- 12 – 14 + 16) +  + (1994 – 1996 – 1998 + 2000)
= 0 + 0 +  + 0 = 0
Dạng 2: BT áp dụng quy tắc bỏ dấu ngoặc, chuyển vế
Bài 1: Rút gọn biểu thức
a/ x + (-30) – [95 + (-40) + (-30)]
b/ a + (273 – 120) – (270 – 120)
c/ b – (294 +130) + (94 + 130)
Hướng dẫn
a/ x + (-30) – 95 – (-40) – 5 – (-30) 
= x + (-30) – 95 + 40 – 5 + 30
= x + (-30) + (-30) + (- 100) + 70 = x + (- 60).
b/ a + 273 + (- 120) – 270 – (-120) 
= a + 273 + (-270) + (-120) + 120 = a + 3
c/ b – 294 – 130 + 94 +130 
= b – 200 = b + (-200)
Bài 2: 1/ Đơn giản biểu thức sau khi bỏ ngoặc:
a/ -a – (b – a – c)
b/ - (a – c) – (a – b + c)
c/ b – ( b+a – c)
d/ - (a – b + c) – (a + b + c)
Hướng dẫn
1. a/ - a – b + a + c = c – b
b/ - a + c –a + b – c = b – 2a.
c/ b – b – a + c = c – a
d/ -a + b – c – a – b – c = - 2a -2c.
Bài 3: So sánh P với Q biết:
P = a {(a – 3) – [( a + 3) – (- a – 2)]}.
Q = [ a + (a + 3)] – [( a + 2) – (a – 2)].
Hướng dẫn
P = a – {(a – 3) – [(a + 3) – (- a – 2)]
 = a – {a – 3 – [a + 3 + a + 2]} = a – {a – 3 – a – 3 – a – 2}
 = a – {- a – 8} = a + a + 8 = 2a + 8.
Q = [a+ (a + 3)] – [a + 2 – (a – 2)]
 = [a + a + 3] – [a + 2 – a + 2] = 2a + 3 – 4 = 2a – 1
Xét hiệu P – Q = (2a + 8) – (2a – 1) = 2a + 8 – 2a + 1 = 9 > 0
Vậy P > Q
Bài 4: Chứng minh rằng a – (b – c) = (a – b) + c = (a + c) – b
Hướng dẫn
Áp dụng quy tắc bỏ dấu ngoặc
Bài 5: Chứng minh:
a/ (a – b) + (c – d) = (a + c) – (b + d)
b/ (a – b) – (c – d) = (a + d) – (b +c)
Áp dung tính
1. (325 – 47) + (175 -53)
2. (756 – 217) – (183 -44)
Hướng dẫn:
Áp dụng quy tắc bỏ dấu ngoặc.
Dạng 3: Tìm x
Bài 1: Tìm x biết:
a/ -x + 8 = -17
b/ 35 – x = 37
c/ -19 – x = -20
d/ x – 45 = -17
Hướng dẫn
a/ x = 25
b/ x = -2
c/ x = 1
d/ x = 28
Bài 2: Tìm x biết
a/ |x + 3| = 15
b/ |x – 7| + 13 = 25
c/ |x – 3| - 16 = -4
d/ 26 - |x + 9| = -13
Hướng dẫn
a/ |x + 3| = 15 nên x + 3 = ±15
x + 3 = 15 x = 12
x + 3 = - 15 x = -18
b/ |x – 7| + 13 = 25 nên x – 7 = ±12
x = 19
x = -5
c/ |x – 3| - 16 = -4
|x – 3| = -4 + 16
|x – 3| = 12
x – 3 = ±12
x - 3 = 12 x = 15
x - 3 = -12 x = -9
d/ Tương tự ta tìm được x = 30 ; x = -48
Bài 3. Cho a,b Z. Tìm x Z sao cho:
a/ x – a = 2
b/ x + b = 4
c/ a – x = 21
d/ 14 – x = b + 9.
Hướng dẫn
a/ x = 2 + a
b/ x = 4 – b
c/ x = a – 21
d/ x = 14 – (b + 9)
 x = 14 – b – 9 
 x = 5 – b.
IV/Cuûng coá baøi giaûng:
V/Baøi taäp veà nhaø – Daën doø:
ĐỀ KIỂM TRA 45 P
I. Trắc nghiệm (5 đ)
Câu 1: Điền chữ Đ (đúng), chữ S (sai) vào ô vuông vạnh các cách viết sau:
a/ 5 N 	
b/ 	-5 N 	
c/ 0 N 	
d/ -3 Z 	
Câu 2: Hãy điền số thích hợp vào chỗ thiếu () để được các câu đúng
a/ Số đối của – 1 là số:
b/ Số đối của 3 là số
c/ Số đối của -25 là số
d/ Số đối của 0 là số
Câu 3: Điền dấu (>, <, =) thích hợp vào ô vuông
a/ 5 -3
b/ -5 -3
c/ |-2004| |2003|
d/ |-10| |0|
Câu 4: Sắp xếp các số nguyên sau theo thứ tự tăng dần:
a/ 12; -12; 34; -45; -2
b/ 102; -111; 7; -50; 0
c/ -21; -23; 77; -77; 23
d/ -2003; 19; 5; -45; 2004
Câu 5: Điền số thích hợp vào ô trống để hoàn thành bảng sao
x
y
x + y
|x + y|
a/
27
-28
b/
-33
89
c/
123
-22
d /
-321
222
Câu 6: Viết tiếp 3 số của mỗi dãy số sau:
a/ 3, 2, 1, , , 
b/ , , ., -19, -16, -13
c/ -2, 0, 2, , , 
d/ , , , 1, 5, 9
Cột A
Cột B
(-12)-(-15)
-3
-28
11 + (-39)
27 -30
43-54
4 + (-15)
3
Câu 7: Nối cột A và B để được kết quả đúng
Câu 8: Giá trị của biểu thức A = 23. 3 + 23.7 – 52 là:
a/ 25
b/ 35
c/ 45
d/ 55
II. Bài tập tự luận: (5 đ)
Bài 1: Tính (1 đ)
a/ (187 -23) – (20 – 180)
b/ (-50 +19 +143) – (-79 + 25 + 48)
Bài 2: Tính tổng: (1, 5đ)
a/ S1 = 1 + (-2) + 3 + (-4) +  + 2001 + ( -2002)
b/ S2 = 1 + (-3) + 5 + (-7) +  + (-1999) + 2001
c/ S 3 = 1 + (-2) + (-3) + 4 + 5 + (-6) + (-7) + 8 +  + 1997 + (-1008) + (-1999) + 2000
Bài 3: Bỏ dấu ngoặc rồi thu gọn biểu thức: (1 đ)
a/ A = (a + b) – (a – b) + (a – c) – (a + c)
b/ B = (a + b – c) + (a – b + c) – (b + c – a) – (a – b – c)
 Bài 4: 1/ Tìm x biết: (1, 5 đ)
a/ 5 – (10 – x) = 7
b/ - 32 - (x – 5) = 0
c/ - 12 + (x – 9) = 0
d/ 11 + (15 – x) = 1
HƯỚNG DẪN CHẤM
I. Trắc nghiệm: 5 điểm
- Mỗi ý đúng trong câu 1, 2, 3, 4, 6, 7, 8 đạt 0.15 điểm. 
- Các câu 1, 2, 3, 4, 6, 7, 8 mỗi câu đúng đủ 4 ý đạt 0,6 đ.Câu 5 đúng tất cả 8 ý đạt 0,8 đ
Câu 1: Điền chữ Đ (đúng), chữ S (sai) vào ô vuông vạnh các cách viết sau:
a/ 5 N 	Đ
b/ 	-5 N 	S
c/ 0 N 	S
d/ -3 Z 	Đ
Câu 2: Hãy điền số thích hợp vào chỗ thiếu () để được các câu đúng
a/ Số đối của – 1 là số:1
b/ Số đối của 3 là số-3
c/ Số đối của -25 là số-25
d/ Số đối của 0 là số0
Câu 3: Điền dấu (>, <, =) thích hợp vào ô vuông
a/ 5 -3
b/ -5 -3
c/ |-2004| |2003|
d/ |-10| |0|
Câu 4: Sắp xếp các số nguyên sau theo thứ tự tăng dần:
a/ 	-45; -12; -2; 12; 34
b/ 	-111; -50; 0; 7; 102
c/ -77; -23; -21; 23; 77
d/ 	-2003; -45; 5; 19; 2004
Câu 5: Điền số thích hợp vào ô trống để hoàn thành bảng sao
x
y
x + y
|x + y|
a/
27
-28
 -1
 1
b/
-33
89
 56
 56
c/
123
-22
 121
 121
d /
-321
222
 99
 99
Câu 6: Viết tiếp 3 số của mỗi dãy số sau:
a/ 3, 2, 1, 0, -1, -2
b/ -28, -25, -22, -19, -16, -13
c/ -2, 0, 2, 4, 6, 8
d/ -11, -7, -3, 1, 5, 9
Câu 7: Nối cột A và B để được kết quả đúng
Cột A
Cột B
(-12)-(-15)
-3
-28
11 + (-39)
27 -30
43-54
4 + (-15)
3
Câu 8: Giá trị của biểu thức A = 23. 3 + 23.7 – 52 là:
a/ 25
b/ 35
c/ 45
d/ 55
II. Bài tập tự luận ( 5 đ)
Bài 1: 	(1 đ) 
a/ 324	b/ 118
Mỗi câu đúng 0, 5 đ.
Bài 2: (1, 5 đ)
a/ S1 = [1 + (-2)] + [3 + (-4)] +  + [2001 + ( -2002)] = (-1) + (-1) + + (-1) = -1001
b/ S2 = [1 + (-3)] + [5 + (-7]) +  + [1997 + (-1999)] + 2001 = (-1000) + 2001 =1001
Mỗi câu đúng 0.75 đ.
Nết nhóm các số hạng đúng: 0.25 đ, nếu tính được tổng mỗi cặp đúng 0.25 đ, kết quả đúng 0.25 đ.
Bài 3: (1 đ)
Hướng dẫn
a/ A = a + b – a + b + a – c – a – c = 2b -2c
b/ B = a + b – c + a – b + c – b – c + a – a + b + c
 = a + a + a – a + b – b – b + b –c + c –c +c = 2a
Bỏ dấu ngoặc đúng 0.5 đ.
Rút gọn đúng 0.5 đ
Bài 4: (1, 5 đ)
1. a/ 5 – (10 – x) = 7 5 – 10 + x = 7
- 5 + x = 7 x = 7 + 5 = 12.
Thử lại 5 – (10 – 12) = 5 – 10 + 12 = 7
Vậy x = 12 đúng là nghiệm.
b/ - 32 – (x -5) = 0 - 32 – x + 5 = 0 - 27 – x = 0 x = - 27
c/ x = 21
d/ x = 25
Mỗi câu đúng 0.75 đ. 
Mỗi câu chuyển vế đúng 0.5 đ.
Kết quả 0.25 đ.

Tài liệu đính kèm:

  • docGA Tu chon toan 6.doc