C.Tiến trình bài giảng:
i. Kiểm tra bài cũ : ( 10')
+ Nêu các công thức định lý hàm số sin,cosin,trung tuyến,diện tích
+ Tính diện tích tam giác ABC biết
ii. Bài mới :
Hoạt động 1 ( 15')
Cho tam giác ABC có c=35;b=20;A=60o
Tính ha;R;r
Hoạt động của HS Hoạt động của GV
- Nghe hiểu nhiệm vụ
- Tìm phương án thắng
- Trình bày kết quả
- Chỉnh sửa hoàn thiện
- Ghi nhận kiến thức Tổ chức cho HS tự tìm ra hướng giải quyết
1 . Cho biết định lý hàm số sin,cosin
2 . Gợi ý: chuyển qua yếu tố cạnh, nhờ tiếp định lý hàm số cosin
3. Công thức diện tích có yếu tố chiều cao, tâm đường tròn nội tiếp.
4 . Các nhóm nhanh chóng cho kết quả
Đáp án:
Hoạt động 2 ( 10')
Cho tam giác ABC có chứng minh rằng 2cotA=cotB+cotC
Hoạt động của HS Hoạt động của GV
- Nghe hiểu nhiệm vụ
- Tìm phương án thắng
- Trình bày kết quả
- Chỉnh sửa hoàn thiện
- Ghi nhận kiến thức * Tổ chức cho HS tự tìm ra hướng giải quyết
1. Cho học sinh nêu lại công thức cosin, sin
Đáp án:
Biến đổi ta đi đến điều phải chứng minh.
iii.Củng cố: ( 10')
- Nhắc lại hệ thức lượng trong tam giác.
- Chứng minh rằng hai trung tuyến kẻ từ B và C của tam giác ABC vuông góc với nhau khi và chỉ khi có hệ thức sau:CotA=2(cotB+cotC)
Hoạt động của HS Hoạt động của GV
- Nghe hiểu nhiệm vụ
- Tìm phương án thắng
- Trình bày kết quả
- Chỉnh sửa hoàn thiện
- Ghi nhận kiến thức * Tổ chức cho HS tự tìm hướng giải quyết
1. Vẽ hình,nhờ định lý hàm số cosin, trung tuyến để chứng minh .
2. Cho HS ghi nhận kiến thức thông qua lời giải
Tiết 9+10 luyện tập hệ thức lượng trong tam giác a.Mục tiêu: Giúp học sinh 1.Về kiến thức: Học sinh biết vận dụng các định lý hàm số cosin, sin vào các bài tập Học sinh biết vận dụng linh hoạt các công thức trên, chuyển đổi từ công thức này sang công thức kia 2.Về kỹ năng: Biết giải thành thạo một số bài tập về ứng dụng của các định lý cosin, sin ,công thức trung tuyến, diện tích tam giác Từ những công thức trên, học sinh biết áp dụng vào giải tam giác 3.Về thái độ-tư duy: Hiểu được các phép biến đổi để đưa về bài toán đơn giản hơn Biết quy lạ về quen. B.Chuẩn bị : Giáo viên: Chuẩn bị các bảng kết quả hoạt động Chuẩn bị phiếu học tập. Chuẩn bị các bài tập trong sách bài tập , sách nâng cao. Học sinh : Học các công thức định lý hàm số côsin, sin, trungtuyến, diện tích của tam giác Tiết 9 c.Tiến trình bài giảng: i. Kiểm tra bài cũ : ( 10') + Nêu các công thức định lý hàm số sin,cosin,trung tuyến,diện tích + Cho tam giác ABC , chứng minh: b2-c2 = a(bcosC-ccosB) ii. Bài mới : Hoạt động 1 ( 10') Cho tam giác ABC chứng minh: sinC=sinAcosB+sinBcosA Hoạt động của HS Hoạt động của GV - Nghe hiểu nhiệm vụ - Tìm phương án thắng - Trình bày kết quả - Chỉnh sửa hoàn thiện - Ghi nhận kiến thức Tổ chức cho HS tự tìm ra hướng giải quyết 1 . Cho biết định lý hàm số sin? cosin 2 . Gợi ý: chuyển qua yếu tố cạnh, nhờ tiếp định lý hàm số cosin 3 . Các nhóm nhanh chóng cho kết quả Hoạt động 2 ( 15') Cho tam giác ABC có BC=12; CA=13, trung tuyến AM=8 a. Tính diện tích tam giác ABC b. Tính góc B Hoạt động của HS Hoạt động của GV - Nghe hiểu nhiệm vụ - Tìm phương án thắng - Trình bày kết quả - Chỉnh sửa hoàn thiện - Ghi nhận kiến thức * Tổ chức cho HS tự tìm ra hướng giải quyết 1. Cho học sinh nêu lại công thức tính diện tích tam giác 2. Hướng dẫn: Tính diện tích tam giác ABM nhờ công thức Hêrông, sau đó nhân đôi sẽ có diện tích tam giác ABC Phân công cho từng nhóm tính toán cho kết quả Đáp án: iii.Củng cố: ( 10') - Nhắc lại các hệ thức lượng giác - Kẻ các đường cao AA’;BB’;CC’ của tam giác nhọn ABC. Chứng minh B’C’ = 2RsinAcosA Hoạt động của HS Hoạt động của GV - Nghe hiểu nhiệm vụ - Tìm phương án thắng - Trình bày kết quả - Chỉnh sửa hoàn thiện - Ghi nhận kiến thức * Tổ chức cho HS tự tìm hướng giải quyết 1. Vẽ hình,nhờ định lý hàm số sin 2. Cho HS ghi nhận kiến thức thông qua lời giải iv. Bài tập về nhà: Làm bài tập 56;61;63;64 SBT nâng cao trang 48 tiết 10 c.Tiến trình bài giảng: i. Kiểm tra bài cũ : ( 10') + Nêu các công thức định lý hàm số sin,cosin,trung tuyến,diện tích + Tính diện tích tam giác ABC biết ii. Bài mới : Hoạt động 1 ( 15') Cho tam giác ABC có c=35;b=20;A=60o Tính ha;R;r Hoạt động của HS Hoạt động của GV - Nghe hiểu nhiệm vụ - Tìm phương án thắng - Trình bày kết quả - Chỉnh sửa hoàn thiện - Ghi nhận kiến thức Tổ chức cho HS tự tìm ra hướng giải quyết 1 . Cho biết định lý hàm số sin,cosin 2 . Gợi ý: chuyển qua yếu tố cạnh, nhờ tiếp định lý hàm số cosin 3. Công thức diện tích có yếu tố chiều cao, tâm đường tròn nội tiếp. 4 . Các nhóm nhanh chóng cho kết quả Đáp án: Hoạt động 2 ( 10') Cho tam giác ABC có chứng minh rằng 2cotA=cotB+cotC Hoạt động của HS Hoạt động của GV - Nghe hiểu nhiệm vụ - Tìm phương án thắng - Trình bày kết quả - Chỉnh sửa hoàn thiện - Ghi nhận kiến thức * Tổ chức cho HS tự tìm ra hướng giải quyết 1. Cho học sinh nêu lại công thức cosin, sin Đáp án: Biến đổi ta đi đến điều phải chứng minh. iii.Củng cố: ( 10') - Nhắc lại hệ thức lượng trong tam giác. - Chứng minh rằng hai trung tuyến kẻ từ B và C của tam giác ABC vuông góc với nhau khi và chỉ khi có hệ thức sau:CotA=2(cotB+cotC) Hoạt động của HS Hoạt động của GV - Nghe hiểu nhiệm vụ - Tìm phương án thắng - Trình bày kết quả - Chỉnh sửa hoàn thiện - Ghi nhận kiến thức * Tổ chức cho HS tự tìm hướng giải quyết 1. Vẽ hình,nhờ định lý hàm số cosin, trung tuyến để chứng minh . 2. Cho HS ghi nhận kiến thức thông qua lời giải iv. Bài tập về nhà: Làm bài tập 62+67 SBT nâng cao trang 48+49 Tiết 11 Luyện tập phương trình tham số của đường thẳng A. Mục tiêu: - Thành thạo việc lập phương trình tham số khi biết một điểm và 1 VTCP - Từ phương trình tham số xác định VTCP và biết một điểm (x, y) có thuộc đường thẳng không. - Thành thạo việc chuyển từ phương trình tham số PTCT PTTQQ B. Chuẩn bị: - Giáo viên: Soạn bài, tìm thêm bài tập ngoài Sgk - Học sinh: Học và làm bài ở nhà. C. Tiến trình bài giảng: I. Kiểm tra bài cũ (10’) Nêu dạng PTTS, PTCT của đường thẳng D : qua M (x0 ; y0) Có VTCP (a, b) - áp dụng : Hãy viết PTTS, PTCT, PTTQ của đường thẳng AB trong mỗi trường hợp sau: a) A (- 3 ; 0) , B (0 ; 5) b) A (4 ; 1) , B ( 4 ; 2) c) A( - 4 ; 1) , B (1 ; 4) II. Bài giảng mới: Hoạt động 1 (15’): Cho A (-5 ; 2) và D : . Hãy viết PTDT a) Đi qua A và // D b) Đi qua A và ^ D Hoạt động của thầy Hoạt động của trò a) Bài toán không đòi hỏi dạng của PTĐT tuỳ chọn dạng thích hợp viết ngay được phương trình D1 : qua A qua A (-5 ; 2) // D ú nhân (1 , 2) làm VT ú D 1 : b) D (1 ; -2) là gì của D1 / b) D (1 ; -2) = D1 D1 : qua A (-5 ; 2) có VTPT D1(1 ; -2) ú D1: 1(x + 5) – 2 (y – 2) = 0 ú D1: x – 2y + 9 = 0 Hai đường thẳng vuông góc với nhau khi VTCP của đt này là VTPT của đt kia Hoạt động 2 (15’) Xét vị trí tương đối của mỗi cặp đường thẳng sau đây và tìm toạ độ giao điểm của chúng (nếu có) của chúng. D6 D2 D3 D1 D4 a) x = 4 – 2t và x = 8 + 6t’ y = 5 + t y = 4 – 3t’ b) x = 5 + t và y = - 3 + 2t D5 c) x = 5 + t và x + y – 4 = 0 y = - 1 - t Hoạt động của thầy Hoạt động của trò a) Hai đt D1 và D2 có VTCP ? Làm thế nào để biết // hoặc không a) ( - 2; 1) cùng phương ( 6; - 3) => D1 // D2 hoặc D1 º D2 Cho t = 0 => M (4 , 5) ẻ D1 nhưng M (4 , 5) ẽ D2 => D1 // D2 b) Hai VTCP của D3 và D4 như thế nào b) (1 ; 2) và ( 2 ; 3) không cùng phương => D3 cắt D4 Tìm toạ độ giao điểm ntn Giải hệ: x = 5 + t t = -5 y = - 3 + 2t => x = 0 y = -13 => D3 ầ D4 = ( 0 ; - 13) c) Tự giải quyết c) D5 º D6 III. Củng cố ( 5' ): 1. Các dạng PTTQ, PTTS, PTCT, cách chuyển vị trí tương đối của hai đường thẳng. 2. Làm bài tập cho D : x = 2 + 2t y = 3 + t a) Tìm điểm M ẻ D và cách điểm A(0 , 1) một khoảng bằng 5 b) Tìm toạ độ giao điểm của D và (d): x + y + 1 = 0 IV. Bài tập về nhà: Làm bài 12 , 13 , 14 Sgk trang 84 + 85 Tiết 12: Luyện tập phương trình, tổng quát của đường thẳng A. Mục tiêu: - Viết được đúng phương trình tổng quát của đường thẳng đi qua một điểm và có một VTPT. - Biết xác định vị trí tương đối của hai đường thẳng và tìm toạ độ giao điểm. B. Chuẩn bị: - Giáo viên: Soạn bài, tìm thêm bài tập ngoài Sgk - Học sinh: Học và làm bài ở nhà. C. Tiến trình bài giảng: I. Kiểm tra bài cũ (10’) Nhắc lại kiến thức cơ bản: Phương trình tổng quát của D: ax + by + c = 0 (a2 + b2 ạ 0) ú (d) - D: qua M1 (x1; y1) qua M2 (x2; y2) ú D : y = k(x – x0) + y0 ú D : a(x – x0) + b( y – y0) = 0 - D: qua M (x0; y0) có VTPT (a; b) - D: qua M (x0; y0) có hsg k II. Bài giảng mới: Hoạt động 1 ( 10') Viết phương trình của đường thẳng D: a) đi qua A (3 ; 2) và B (- 1 ;- 5) b) đi qua A (- 1 ; 4) và có VTPT (4; 1) c) đi qua A (1 ; 1) và có hsg k = 2 Hoạt động của thầy Hoạt động của trò Gọi 3 học sinh lên bảng làm Hướng dẫn và uốn nắn Trình bày lời giải mẫu Lên bảng làm Hoạt động 2 (10' ) Viết phương trình trung trực của D ABC biết trung điểm các cạnh là M (- 1; - 1) , N (1 ; 9)n P (9 ; 1). Hoạt động của thầy Hoạt động của trò Ký hiệu B P M A N C Gọi các đường trung trực kẻ từ M, N, P theo thứ tự là dM, dN, dP dM qua M dM qua M (-1 ; -1) ^ có VTPT ẻ (8;8) ú dM: x – y = 0 Hãy làm tương tự dN: 5 x + y – 14 = 0 dP: x + 5y – 14 = 0 III. Luyện và củng cố (15’) Xét vị trí tương đối của mỗi cặp đường thẳng sau và tâm giao điểm (nếu có) của chúng. a) 2x – 5y + 3 = 0 và 5 x + 2y – 3 = 0 b) x – 3y + 4 = 0 và 0,5 x – 0,5y + 4 = 0 c) 10x + 2y – 3 = 0 và 5x + y – 1,5 = 0 Hoạt động của thầy Hoạt động của trò Có nên tính D, Dx, Dy không ? Vì sao Không, vì a2, b2, c2 ạ 0 Nên ta làm gì ? Xét các tỷ lệ thức Hãy thực hiện Học trò lên bảng làm Kết quả a) cắt nhau tại () b) // c) º IV. Bài về nhà: Làm bài 4 + 5 trang 80 Sgk
Tài liệu đính kèm: