Giáo án tự chọn Hình học Lớp 10 - Tiết 9 đến 12 - Lê Phúc Cường

Giáo án tự chọn Hình học Lớp 10 - Tiết 9 đến 12 - Lê Phúc Cường

C.Tiến trình bài giảng:

i. Kiểm tra bài cũ : ( 10')

 + Nêu các công thức định lý hàm số sin,cosin,trung tuyến,diện tích

 + Tính diện tích tam giác ABC biết

ii. Bài mới :

Hoạt động 1 ( 15')

Cho tam giác ABC có c=35;b=20;A=60o

Tính ha;R;r

Hoạt động của HS Hoạt động của GV

- Nghe hiểu nhiệm vụ

- Tìm phương án thắng

- Trình bày kết quả

- Chỉnh sửa hoàn thiện

- Ghi nhận kiến thức Tổ chức cho HS tự tìm ra hướng giải quyết

1 . Cho biết định lý hàm số sin,cosin

2 . Gợi ý: chuyển qua yếu tố cạnh, nhờ tiếp định lý hàm số cosin

3. Công thức diện tích có yếu tố chiều cao, tâm đường tròn nội tiếp.

4 . Các nhóm nhanh chóng cho kết quả

 Đáp án:

Hoạt động 2 ( 10')

Cho tam giác ABC có chứng minh rằng 2cotA=cotB+cotC

Hoạt động của HS Hoạt động của GV

- Nghe hiểu nhiệm vụ

- Tìm phương án thắng

- Trình bày kết quả

- Chỉnh sửa hoàn thiện

- Ghi nhận kiến thức * Tổ chức cho HS tự tìm ra hướng giải quyết

1. Cho học sinh nêu lại công thức cosin, sin

 Đáp án:

Biến đổi ta đi đến điều phải chứng minh.

iii.Củng cố: ( 10')

- Nhắc lại hệ thức lượng trong tam giác.

 - Chứng minh rằng hai trung tuyến kẻ từ B và C của tam giác ABC vuông góc với nhau khi và chỉ khi có hệ thức sau:CotA=2(cotB+cotC)

Hoạt động của HS Hoạt động của GV

- Nghe hiểu nhiệm vụ

- Tìm phương án thắng

- Trình bày kết quả

- Chỉnh sửa hoàn thiện

- Ghi nhận kiến thức * Tổ chức cho HS tự tìm hướng giải quyết

1. Vẽ hình,nhờ định lý hàm số cosin, trung tuyến để chứng minh .

2. Cho HS ghi nhận kiến thức thông qua lời giải

 

doc 8 trang Người đăng lananh572 Lượt xem 696Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án tự chọn Hình học Lớp 10 - Tiết 9 đến 12 - Lê Phúc Cường", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tiết 9+10
luyện tập hệ thức lượng trong tam giác
a.Mục tiêu:
 Giúp học sinh
1.Về kiến thức: 
Học sinh biết vận dụng các định lý hàm số cosin, sin vào các bài tập
Học sinh biết vận dụng linh hoạt các công thức trên, chuyển đổi từ công thức này sang công thức kia
2.Về kỹ năng:
Biết giải thành thạo một số bài tập về ứng dụng của các định lý cosin, sin ,công thức trung tuyến, diện tích tam giác
Từ những công thức trên, học sinh biết áp dụng vào giải tam giác
3.Về thái độ-tư duy:
Hiểu được các phép biến đổi để đưa về bài toán đơn giản hơn
Biết quy lạ về quen.
B.Chuẩn bị :
Giáo viên:
Chuẩn bị các bảng kết quả hoạt động
Chuẩn bị phiếu học tập.
Chuẩn bị các bài tập trong sách bài tập , sách nâng cao.
Học sinh :
 Học các công thức định lý hàm số côsin, sin, trungtuyến, diện tích của tam giác
Tiết 9
c.Tiến trình bài giảng:
i. Kiểm tra bài cũ : ( 10') 
	+ Nêu các công thức định lý hàm số sin,cosin,trung tuyến,diện tích
 + Cho tam giác ABC , chứng minh: b2-c2 = a(bcosC-ccosB)
ii. Bài mới :
Hoạt động 1 ( 10')
Cho tam giác ABC chứng minh: sinC=sinAcosB+sinBcosA
Hoạt động của HS
Hoạt động của GV
- Nghe hiểu nhiệm vụ
- Tìm phương án thắng
- Trình bày kết quả
- Chỉnh sửa hoàn thiện
- Ghi nhận kiến thức
 Tổ chức cho HS tự tìm ra hướng giải quyết
1 . Cho biết định lý hàm số sin? cosin
2 . Gợi ý: chuyển qua yếu tố cạnh, nhờ tiếp định lý hàm số cosin
3 . Các nhóm nhanh chóng cho kết quả
Hoạt động 2 ( 15')
Cho tam giác ABC có BC=12; CA=13, trung tuyến AM=8
a. Tính diện tích tam giác ABC
b. Tính góc B
Hoạt động của HS
Hoạt động của GV
- Nghe hiểu nhiệm vụ
- Tìm phương án thắng
- Trình bày kết quả
- Chỉnh sửa hoàn thiện
- Ghi nhận kiến thức
* Tổ chức cho HS tự tìm ra hướng giải quyết
1. Cho học sinh nêu lại công thức tính diện tích tam giác
2. Hướng dẫn: Tính diện tích tam giác ABM nhờ công thức Hêrông, sau đó nhân đôi sẽ có diện tích tam giác ABC
Phân công cho từng nhóm tính toán cho kết quả
 Đáp án: 
iii.Củng cố: ( 10')
- Nhắc lại các hệ thức lượng giác
	 - Kẻ các đường cao AA’;BB’;CC’ của tam giác nhọn ABC.
	Chứng minh B’C’ = 2RsinAcosA
Hoạt động của HS
Hoạt động của GV
- Nghe hiểu nhiệm vụ
- Tìm phương án thắng
- Trình bày kết quả
- Chỉnh sửa hoàn thiện
- Ghi nhận kiến thức
* Tổ chức cho HS tự tìm hướng giải quyết
1. Vẽ hình,nhờ định lý hàm số sin
2. Cho HS ghi nhận kiến thức thông qua lời giải 
iv. Bài tập về nhà:
Làm bài tập 56;61;63;64 SBT nâng cao trang 48
tiết 10
c.Tiến trình bài giảng:
i. Kiểm tra bài cũ : ( 10') 
	+ Nêu các công thức định lý hàm số sin,cosin,trung tuyến,diện tích
 + Tính diện tích tam giác ABC biết 
ii. Bài mới :
Hoạt động 1 ( 15')
Cho tam giác ABC có c=35;b=20;A=60o
Tính ha;R;r
Hoạt động của HS
Hoạt động của GV
- Nghe hiểu nhiệm vụ
- Tìm phương án thắng
- Trình bày kết quả
- Chỉnh sửa hoàn thiện
- Ghi nhận kiến thức
 Tổ chức cho HS tự tìm ra hướng giải quyết
1 . Cho biết định lý hàm số sin,cosin
2 . Gợi ý: chuyển qua yếu tố cạnh, nhờ tiếp định lý hàm số cosin
3. Công thức diện tích có yếu tố chiều cao, tâm đường tròn nội tiếp.
4 . Các nhóm nhanh chóng cho kết quả
 Đáp án: 
Hoạt động 2 ( 10')
Cho tam giác ABC có chứng minh rằng 2cotA=cotB+cotC
Hoạt động của HS
Hoạt động của GV
- Nghe hiểu nhiệm vụ
- Tìm phương án thắng
- Trình bày kết quả
- Chỉnh sửa hoàn thiện
- Ghi nhận kiến thức
* Tổ chức cho HS tự tìm ra hướng giải quyết
1. Cho học sinh nêu lại công thức cosin, sin
 Đáp án: 
Biến đổi ta đi đến điều phải chứng minh.
iii.Củng cố: ( 10')
- Nhắc lại hệ thức lượng trong tam giác.
	 - Chứng minh rằng hai trung tuyến kẻ từ B và C của tam giác ABC vuông góc với nhau khi và chỉ khi có hệ thức sau:CotA=2(cotB+cotC)
Hoạt động của HS
Hoạt động của GV
- Nghe hiểu nhiệm vụ
- Tìm phương án thắng
- Trình bày kết quả
- Chỉnh sửa hoàn thiện
- Ghi nhận kiến thức
* Tổ chức cho HS tự tìm hướng giải quyết
1. Vẽ hình,nhờ định lý hàm số cosin, trung tuyến để chứng minh .
2. Cho HS ghi nhận kiến thức thông qua lời giải 
iv. Bài tập về nhà:
Làm bài tập 62+67 SBT nâng cao trang 48+49
Tiết 11
Luyện tập phương trình tham số của đường thẳng
A. Mục tiêu:
- Thành thạo việc lập phương trình tham số khi biết một điểm và 1 VTCP
- Từ phương trình tham số xác định VTCP và biết một điểm (x, y) có thuộc đường thẳng không.
- Thành thạo việc chuyển từ phương trình tham số PTCT PTTQQ
B. Chuẩn bị:
- Giáo viên: Soạn bài, tìm thêm bài tập ngoài Sgk
- Học sinh: Học và làm bài ở nhà.
C. Tiến trình bài giảng:
I. Kiểm tra bài cũ (10’)
Nêu dạng PTTS, PTCT của đường thẳng D :	qua M (x0 ; y0)
	Có VTCP (a, b)
- áp dụng : Hãy viết PTTS, PTCT, PTTQ của đường thẳng AB trong mỗi trường hợp sau:
a) A (- 3 ; 0)	 , B (0 ; 5)
b) A (4 ; 1) , B ( 4 ; 2)
c) A( - 4 ; 1) , B (1 ; 4)
II. Bài giảng mới:
Hoạt động 1 (15’):
Cho A (-5 ; 2) và D : . Hãy viết PTDT
a) Đi qua A và // D
b) Đi qua A và ^ D
Hoạt động của thầy
Hoạt động của trò
a) Bài toán không đòi hỏi dạng của PTĐT tuỳ chọn dạng thích hợp viết ngay được phương trình
D1 : qua A qua A (-5 ; 2)
 // D ú nhân (1 , 2) làm VT
ú D 1 : 
b) D (1 ; -2) là gì của D1 /
b) D (1 ; -2) = D1
D1 : qua A (-5 ; 2)
 có VTPT D1(1 ; -2)
ú D1: 1(x + 5) – 2 (y – 2) = 0
ú D1: x – 2y + 9 = 0
Hai đường thẳng vuông góc với nhau khi VTCP của đt này là VTPT của đt kia
Hoạt động 2 (15’)
Xét vị trí tương đối của mỗi cặp đường thẳng sau đây và tìm toạ độ giao điểm của chúng (nếu có) của chúng.
D6
D2
D3
D1
D4
a)	x = 4 – 2t	và 	x = 8 + 6t’
	y = 5 + t 	y = 4 – 3t’
b)	x = 5 + t	và	
	y = - 3 + 2t
D5
c)	x = 5 + t	và 	x + y – 4 = 0 
	y = - 1 - t
Hoạt động của thầy
Hoạt động của trò
a) Hai đt D1 và D2 có VTCP ?
Làm thế nào để biết // hoặc không
a) ( - 2; 1) cùng phương ( 6; - 3)
=> D1 // D2 hoặc D1 º D2
Cho t = 0 => M (4 , 5) ẻ D1 nhưng
 M (4 , 5) ẽ D2
=> D1 // D2
b) Hai VTCP của D3 và D4 như thế nào
b) (1 ; 2) và ( 2 ; 3) không cùng phương => D3 cắt D4
Tìm toạ độ giao điểm ntn 
Giải hệ: x = 5 + t t = -5
 y = - 3 + 2t => x = 0
 y = -13
=> D3 ầ D4 = ( 0 ; - 13)
c) Tự giải quyết
c) D5 º D6
III. Củng cố ( 5' ):
1. Các dạng PTTQ, PTTS, PTCT, cách chuyển vị trí tương đối của hai đường thẳng.
2. Làm bài tập cho D : 	x = 2 + 2t
	y = 3 + t
a) Tìm điểm M ẻ D và cách điểm A(0 , 1) một khoảng bằng 5
b) Tìm toạ độ giao điểm của D và (d): x + y + 1 = 0
IV. Bài tập về nhà:
Làm bài 12 , 13 , 14 Sgk trang 84 + 85
Tiết 12:
Luyện tập phương trình, tổng quát của đường thẳng
A. Mục tiêu:
- Viết được đúng phương trình tổng quát của đường thẳng đi qua một điểm và có một VTPT.
- Biết xác định vị trí tương đối của hai đường thẳng và tìm toạ độ giao điểm.
B. Chuẩn bị:
- Giáo viên: Soạn bài, tìm thêm bài tập ngoài Sgk
- Học sinh: Học và làm bài ở nhà.
C. Tiến trình bài giảng:
I. Kiểm tra bài cũ (10’)
Nhắc lại kiến thức cơ bản: Phương trình tổng quát của D: ax + by + c = 0 (a2 + b2 ạ 0)
ú (d)
- D:	qua M1 (x1; y1)	
	qua M2 (x2; y2)
 ú D : y = k(x – x0) + y0
 ú D : a(x – x0) + b( y – y0) = 0
- D:	qua M (x0; y0)	
	có VTPT (a; b)
- D: qua M (x0; y0)
	có hsg k
II. Bài giảng mới:
Hoạt động 1 ( 10')
Viết phương trình của đường thẳng D:
a) đi qua A (3 ; 2) và B (- 1 ;- 5)
b) đi qua A (- 1 ; 4) và có VTPT (4; 1)
c) đi qua A (1 ; 1) và có hsg k = 2
Hoạt động của thầy
Hoạt động của trò
Gọi 3 học sinh lên bảng làm
Hướng dẫn và uốn nắn 
Trình bày lời giải mẫu
Lên bảng làm
Hoạt động 2 (10' )
Viết phương trình trung trực của D ABC biết trung điểm các cạnh là M (- 1; - 1) , N (1 ; 9)n P (9 ; 1).
Hoạt động của thầy
Hoạt động của trò
Ký hiệu	 B
 P M
 A N C
Gọi các đường trung trực kẻ từ M, N, P theo thứ tự là dM, dN, dP
dM qua M dM qua M (-1 ; -1)
 ^ có VTPT ẻ (8;8)
ú dM: x – y = 0
Hãy làm tương tự
dN: 5 x + y – 14 = 0
dP: x + 5y – 14 = 0
III. Luyện và củng cố (15’)
Xét vị trí tương đối của mỗi cặp đường thẳng sau và tâm giao điểm (nếu có) của chúng.
a) 2x – 5y + 3 = 0 và 5 x + 2y – 3 = 0
b) x – 3y + 4 = 0 và 0,5 x – 0,5y + 4 = 0
c) 10x + 2y – 3 = 0 và 5x + y – 1,5 = 0
Hoạt động của thầy
Hoạt động của trò
Có nên tính D, Dx, Dy không ? Vì sao
Không, vì a2, b2, c2 ạ 0
Nên ta làm gì ?
Xét các tỷ lệ thức
Hãy thực hiện
Học trò lên bảng làm
Kết quả
a) cắt nhau tại ()
b) //
c) º
IV. Bài về nhà:
Làm bài 4 + 5 trang 80 Sgk

Tài liệu đính kèm:

  • doctu chon bam sat hinh hoc 10 co ban.doc