I/ MỤC TIÊU
- HS được củng cố và khắc sâu các kiến thức về BCNN của các số.
- Biết tìm BC thông qua BCNN của các số.
- Vận dụng tìm BC và BCNN trong các bài toán thực tế đơn giản
II/ HOẠT ĐỘNG DẠY HỌC
Hoạt động 1 : Kiểm tra
HS1: Thế nào là BCNN của 2 hay nhiều số ? Nêu nhận xét về BCNN của các số ?
Tìm BCNN (10,12,15) ?
HS2: Phát biểu qui tắc tìm BCNN của các số ?
Tìm BCNN (8,9,11) ; BCNN (25,50) ?
- GV nhận xét, đánh giá cho điểm.
Hoạt động 2 : Luyện tập
- GV đưa bài tập lên bảng :
Tìm a N biết a < 1000="">
a 60; a 280.
- Yêu cầu lớp thảo luận nhóm
- Gọi đại diện 1 nhóm lên bảng trình bày.
- Yêu cầu HS lớp nhận xét bài làm của nhóm bạn.
- GV yêu cầu HS đọc đề bài 152 – SGK
- GV yêu cầu cả lớp làm bài vào vở
- GV gọi 1 HS lên bảng trình bày. Một HS đọc to đề bài
Đại diện nhóm trình bày :
Ta có :
Mặt khác BCNN (60,280) = 840
a B(840) = {0,840,.} và a <>
a = 840
Bài 152 – SGK
HS : Vì a nhỏ nhất khác 0; a 15; a 18
a = BCNN (15;18) = 90
Vậy a = 90
- GV yêu cầu HS đọc đề bài 153 – SGK
- Để tìm BC(30,45) ta làm như thế nào ?
- XĐ các BC(30,45) < 500="">
- Gọi 1 HS lên bảng trình bày
- Yêu cầu HS lớp nhận xét bài làm của bạn.
- Y/c HS làm bài 154 – SGK
- Nếu gọi số HS lớp 6C là a, khi xếp hàng 2; hàng3; hàng 4; hàng 8 đều vừa đủ hàng . Vậy a có quan hệ ntn với các số 2,3,4,8.
- GV: Số a còn phải thoả mãn ĐK gì ?
- Từ đó XĐ các giá trị của a thoả mãn các điệu kiện đã cho ?
- GV gọi 1 HS đứng tại chỗ trình bày
- GV tổ chức cho HS hoạt động nhóm giải bài tập trên phiếu học tập bài 155 – SGK
- Từ đó rút ra nhận xét qua việc giải bài tập trên.
- GV thu phiếu học tập của các nhóm chấm điểm .
- Từ bài tập trên ta rút ra được nxét gì ?
- GV nxét, chốt kiến thức. Bài 153 – SGK
- HS trình bày :
Ta có : BCNN (30,45) = 90
BC (30,45) = {0,90,180,.}
Vậy các BC (30,45 ) nhỏ hơn 500 là :
0, 90, 180, 240, 360, 450.
Bài 154 – SGK
HS : Nếu gọi số HS lớp 6A là a theo bài ra ta có : a 2; a 3; a 4; a 8
a BC(2,3,4,8)
Ta có : BCNN(2,3,4,8) = 24
BC(2,3,4,8) = {0,24,48,72,.}
Vậy số học sinh lớp 6C là 48 H/s
Bài 155 – SGK
a
6
150
28
50
b
4
20
15
50
ƯCLN (a,b)
2
10
1
50
BCNN (a,b)
12
300
420
50
ƯCLN (a,b). ƯCLN (a,b)
24
3000
420
2500
a.b
24
3000
420
2500
Nhận xét :
ƯCLN (a,b) . ƯCLN (a,b) = a.b
Tuần 12 : Ngày soạn: 19/11/2009 Ngày dạy: 23/11/2009 Tiết 34 : Bội chung nhỏ nhất I/ Mục Tiêu HS hiểu được thế nào là BCNN của nhiều số. Biết tìm BCNN của nhiều số bằng cách phân tích các số đó ra TSNT HS biết phân biệt điểm giống nhau và khác nhau giữa 2 qui tắc tìm ƯCLN và BCNN. Biết tìm BCNN 1 cách hợp lý trong từng trường hợp, biết tìm BC thông qua tìm BCNN. II/ Hoạt động dạy học Hoạt động 1 : Kiểm tra - Thế nào là BC của hai hay nhiều số ? Khi nào x ẻ BC(a;b) ? Tìm BC(4,6) ? - GV yêu cầu HS lớp nhận xét, đánh giá và cho điểm Hoạt động 2 : 1/ Bội chung nhỏ nhất - GV viết lại kết quả kết quả bài tập phần kiểm tra: BC(4,6) = {0,12,24,36,...} - GV : Số nhỏ nhất ạ 0 ẻ BC(4,6) là 12 được gọi là bội chung nhỏ nhất của 4 và 6 kí hiệu là : BCNN (4,6) = 12 - Vậy BCNN của hai hay nhiều số là gì ? HS : BCNN của 2 hay nhiều số là số nhỏ nhất ạ 0 thuộc tập BC của các số đó. - GV yêu cầu HS đọc định nghĩa – SGK - Hãy so sánh hai tập hợp B(12) và BC(4,6) ? - Từ đó rút ra nhận xét gì ? - Yêu cầu 1 HS đọc nhận xét – SGK - GV: Tìm BCNN (6,1); BCNN (6,5,1) ? - GV đưa ra chú ý – SGK - GV chốt kiến thức HS đọc định nghĩa – SGK HS : B(12) = BC(4,6) Vậy B(BCNN(4,6)) = BC(4,6) HS đọc nhận xét – SGK HS : BCNN (6,1) = 6; BCNN (6,5,1) =30 HS đọc chú ý – SGK Hoạt động 3: 2/ Tìm BCNN bằng cách phân tích các số ra TSNT - GV đưa ra Ví dụ 2 – SGK : Tìm BCNN (8;18; 30) ? - Hãy phân tích mỗi số ra TSNT ? - GV cho HS hoạt động nhóm, báo cáo kết quả đối chiếu, nhận xét. - Để chia hết cho 8, cho18, cho30 thì BCNN(8;18; 30) phải chứa các TSNT nào? Với số mũ bao nhiêu ? - GV: Để tìm ƯCLN của các số ta lập tích các TSNT chung và riêng mỗi TSNT lấy với số mũ lớn nhất, tích đó chính là BCNN của các số. - Vậy muốn tìm BCNN của 2 hay nhiều số ta làm như thế nào ? - Yêu cầu HS đọc qui tắc – SGK - So sánh điểm giống và khác nhau đối với qui tắc tìm ƯCLN của các số ? - Tìm BCNN (12,16,48) ? - Từ đó rút ra nhận xét gì ? - GV nxét, chốt kiến thức HS hoạt động nhóm: Kết quả : 8 = 23 ; 18 = 2.32 ; 30 = 2.3.5 HS: Để chia hết cho 8, cho18, cho30 thì BCNN(8;18; 30) phải chứa các TSNT chung và riêng, mỗi thừa số lấy với số mũ lớn nhất . Ta có : BCNN(8;18; 30) = 23.32.5 = 360 HS : Phát biểu được nội dung qui tắc – SGK HS đọc qui tắc - SGK HS: So sánh được sự giống và khác nhau của 2 qui tắc ? HS : BCNN (12,16,48) = 48 HS nêu được KL – SGK Hoạt động 4 : 3/ Tìm BC thông qua BCNN - GV yêu cầu HS đọc ví dụ 3 – SGK - Phần tử x phải thoả mãn những ĐK nào ? - Để xác định BC(8,18,30) ta làm như thế nào ? - Từ đó xác định các giá trị của x thoả mãn các ĐK đã cho ? - Thông qua bài tập trên hãy nêu cách tìm BC của hai hay nhiều số ? HS: Theo bài ra ta có : x ẻ BC(8,18,30) Mặt khác BCNN (8,18,30) = 360 ị BC(8,18,30)= = B(360) = {0,360,720,..} Do x ẻ BC(8,18,30) và x < 1000 Nên A = {0,360,720} HS: Nêu nội dung KL – SGK Hoạt động 5 : Củng cố - Thế nào là BCNN của hai hay nhiều số ? - Có mấy cách tìm BCNN của 2 hay nhiều số ? - Phát biểu qui tắc tìm BCNN bằng cách phân tích các số ra TSNT. - Nêu cách tìm BCNN của các số trong trường hợp đặc biệt. - GV chốt các nội dung kiến thức cơ bản của bài Hoạt động 6: Hướng dẫn về nhà Học thuộc các nội dung lý thuyết cơ bản của bài Làm bài tập : 150 ;151 – SGK ; Bài tập 186 – SBT ---------------------------------------------------------- Ngày soạn: 19/11/2009 Ngày dạy: 23/11/2009 Tiết 35 : Luyện tập 1 I/ Mục Tiêu HS được củng cố và khắc sâu các kiến thức về BCNN của các số. Biết tìm BC thông qua BCNN của các số. Vận dụng tìm BC và BCNN trong các bài toán thực tế đơn giản II/ Hoạt động dạy học Hoạt động 1 : Kiểm tra HS1: Thế nào là BCNN của 2 hay nhiều số ? Nêu nhận xét về BCNN của các số ? Tìm BCNN (10,12,15) ? HS2: Phát biểu qui tắc tìm BCNN của các số ? Tìm BCNN (8,9,11) ; BCNN (25,50) ? GV nhận xét, đánh giá cho điểm. Hoạt động 2 : Luyện tập - GV đưa bài tập lên bảng : Tìm a ẻ N biết a < 1000 và a M 60; a M 280. - Yêu cầu lớp thảo luận nhóm - Gọi đại diện 1 nhóm lên bảng trình bày. - Yêu cầu HS lớp nhận xét bài làm của nhóm bạn. - GV yêu cầu HS đọc đề bài 152 – SGK - GV yêu cầu cả lớp làm bài vào vở - GV gọi 1 HS lên bảng trình bày. Một HS đọc to đề bài Đại diện nhóm trình bày : Ta có : Mặt khác BCNN (60,280) = 840 ị a ẻ B(840) = {0,840,..} và a <1000 ị a = 840 Bài 152 – SGK HS : Vì a nhỏ nhất khác 0; a M 15; a M 18 ị a = BCNN (15;18) = 90 Vậy a = 90 - GV yêu cầu HS đọc đề bài 153 – SGK - Để tìm BC(30,45) ta làm như thế nào ? - XĐ các BC(30,45) < 500 ? - Gọi 1 HS lên bảng trình bày - Yêu cầu HS lớp nhận xét bài làm của bạn. - Y/c HS làm bài 154 – SGK - Nếu gọi số HS lớp 6C là a, khi xếp hàng 2; hàng3; hàng 4; hàng 8 đều vừa đủ hàng . Vậy a có quan hệ ntn với các số 2,3,4,8. - GV: Số a còn phải thoả mãn ĐK gì ? - Từ đó XĐ các giá trị của a thoả mãn các điệu kiện đã cho ? - GV gọi 1 HS đứng tại chỗ trình bày - GV tổ chức cho HS hoạt động nhóm giải bài tập trên phiếu học tập bài 155 – SGK - Từ đó rút ra nhận xét qua việc giải bài tập trên. - GV thu phiếu học tập của các nhóm chấm điểm . - Từ bài tập trên ta rút ra được nxét gì ? - GV nxét, chốt kiến thức. Bài 153 – SGK - HS trình bày : Ta có : BCNN (30,45) = 90 ị BC (30,45) = {0,90,180,...} Vậy các BC (30,45 ) nhỏ hơn 500 là : 0, 90, 180, 240, 360, 450. Bài 154 – SGK HS : Nếu gọi số HS lớp 6A là a theo bài ra ta có : aM 2; aM 3; aM 4; aM 8 ị a ẻ BC(2,3,4,8) Ta có : BCNN(2,3,4,8) = 24 ị BC(2,3,4,8) = {0,24,48,72,..} Vậy số học sinh lớp 6C là 48 H/s Bài 155 – SGK a 6 150 28 50 b 4 20 15 50 ƯCLN (a,b) 2 10 1 50 BCNN (a,b) 12 300 420 50 ƯCLN (a,b). ƯCLN (a,b) 24 3000 420 2500 a.b 24 3000 420 2500 Nhận xét : ƯCLN (a,b) . ƯCLN (a,b) = a.b Hoạt động 3: Hướng dẫn về nhà Xem lại các bài tập đã giải Làm các bài tập : 189 đ 192 – SBT -------------------------------------------------------- Ngày soạn: 19/11/2009 Ngày dạy: 24/11/2009 Tiết 36 : Luyện tập 2 I/ Mục Tiêu HS được củng cố và khắc sâu các kiến thức về tìm BCNN và BC thông qua BCNN Rèn luện kỹ năng tính toán, biết tìm BCNN một cách hợp trong từng trường hợp cụ thể. Vận dụng tìm BC và BCNN trong các bài toán thực tế đơn giản II/ Hoạt động dạy học Hoạt động 1 : Kiểm tra - Số tự nhiên a thoả mãn điều kiện : a M 21 ; a M 35 và 200 < a < 250 là : A. 205 B. 210 C.215 Hãy chọn vào chữ cái đứng trước kết quả đúng ? - Một Liên đội khi xếp hàng tập thể dục, xếp hàng 2;3;4;5 đều vừa đủ. Tính số đội viên của Liên đội đó biết rằng số đội viên của liên đội khoảng từ 100 đến 150 em. Hoạt động 2 : Luyện tập - GV yêu cầu HS đọc đề bài 156 – SGK - Theo bài ra số tự nhiên x phải thoả mãn những điều kiện nào ? - Hãy tìm BCNN (12,21,28) từ đó xác định các giá trị của x thoả mãn các điều kiện đã cho ? - GV gọi 1 HS lên bảng trình bày - Yêu cầu HS lớp nhận xét chữa bài của bạn nếu có ? - GV yêu cầu HS đọc đề bài 157 – SGK - Nếu sau a ngày hai bạn lại cùng trực nhật thì a có quan hệ ntn với 10 và 15 ? - Hãy xác định giá trị phải tìm của a ? - Yêu cầu 1 HS lên bảng trình bày và HS lớp làm bài vào vở. - GV nxét, chốt kết quả - GV yêu cầu HS đọc đề bài 158– SGK - So sánh sự khác nhau của hai bài tập trên - GV: Nếu gọi số cây mỗi đội phải trồng là a, khi đó a phải thoả mãn các ĐK gì ? - Từ đó xác định số cây mà mỗi đội phải trồng ? - GV yêu cầu HS thảo luận theo nhóm - Yêu cầu đại diện 1 nhóm lên trình bày - GV yêu cầu HS nhóm khác nhận xét , sửa bài làm của nhóm bạn. - GV chốt kết quả Bài 156 – SGK HS: Theo bài ra ta có : x ẻ BC(12,21,28) 150 < x < 300 Mặt khác BCNN (12,21,28) = 84 ị x ẻ BC(12,21,28) = {0,84,168,252,..} Vì 150 < x < 300 ị x = 168 ; x = 252 Bài 157 – SGK Nếu sau a ngày hai bạn lại cùng trực nhật thì a = BCNN (10,12) = 60 (ngày) ĐS: 60 ngày Bài 158– SGK HS: ở bài 158 số phải tìm ẻ BC và thoả mãn ĐK cho trước, ở bài 157 thì số phải tìm là BCNN của các số. HS: Đại diện nhóm lên bảng trình bày: Giải: Gọi số cây mỗi đội phải trồng là a. Ta có : a ẻ BC(8,9) và 100 Ê a Ê 200 Do ƯCLN (8,9) =1 ị BCNN (8,9) = 72 ị a ẻ B(72) = {0,72,144,216,...} Vì 100 Ê a Ê 200 ị a = 144 Vậy số cây mà mỗi đội phải trồng là 144 cây Hoạt động 3 : Củng cố Có thể em chưa biết : Lịch can chi ở phương đông trong đó có Việt Nam; Năm Âm lịch được tính bằng cách ghép 10 can (theo thứ tự : Giáp, ất, Bính, Đinh,...) với 12 chi (theo thứ tự : Tí, Sửu, Dần,Mão,...).Năm đầu tiên Giáp được ghép với Tí thành năm Giáp Tí , cứ 10 năm Giáp lại được lặp lại 1 lần và cứ 12 năm Tí lại được lặp lại một lần. Vậy theo em sau bao nhiêu năm năm Giáp Tí lại được lặp lại ? HS: Số năm để lặp lại tên năm âm lịch Giáp Tí = BCNN (10, 12) = 60 ( năm) . Vậy tên của các của các năm âm lịch khác cũng được lặp lại sau 60 năm. - GV chốt các nội dung kiến thức cơ bản của bài Hoạt động 4: Hướng dẫn về nhà Xem lại các dạng bài tập đã làm Học bài theo các câu hỏi ôn tập chương I Làm các Bài tập : 159 đ 161 – SGK ; Bài tập : 196; 197 – SBT .........................................................................................................................................................................................................................................................................................................................................................................................................................................
Tài liệu đính kèm: