A> MỤC TIÊU
- Rèn HS kỉ năng viết tập hợp, viết tập hợp con của một tập hợp cho trước, sử dụng đúng, chính xác các kí hiệu .
- Sự khác nhau giữa tập hợp
- Biết tìm số phần tử của một tập hợp được viết dưới dạng dãy số cóquy luật.
- Vận dụng kiến thức toán học vào một số bài toán thực tế.
B> NỘI DUNG
NS: 04/08/2010 ND: Tuần: 1 +2 Tiết: 1+2 TẬP HỢP Thời gian thực hiện: 2 tiết. MỤC TIÊU - Rèn HS kỉ năng viết tập hợp, viết tập hợp con của một tập hợp cho trước, sử dụng đúng, chính xác các kí hiệu . - Sự khác nhau giữa tập hợp - Biết tìm số phần tử của một tập hợp được viết dưới dạng dãy số cóquy luật. - Vận dụng kiến thức toán học vào một số bài toán thực tế. NỘI DUNG Tiết 1 I. Ôn tập lý thuyết. Câu 1: Hãy cho một số VD về tập hợp thường gặp trong đời sống hàng ngày và một số VD về tập hợp thường gặp trong toán học? Câu 2: Hãy nêu cách viết, các ký hiệu thường gặp trong tập hợp. Câu 3: Một tập hợp có thể có bao nhiêu phần tử? Câu 4: Có gì khác nhau giữa tập hợp và ? II. Bài tập Dạng 1: Rèn kĩ năng viết tập hợp, viết tập hợp con, sử dụng kí hiệu Bài 1: Cho tập hợp A là các chữ cái trong cụm từ “Thành phố Hồ Chí Minh” Hãy liệt kê các phần tử của tập hợp A. Điền kí hiệu thích hợp vào ô vuông b ý A ; c ý A ; h ý A Hướng dẫn a/ A = {a, c, h, I, m, n, ô, p, t} b/ Lưu ý HS: Bài toán trên không phân biệt chữ in hoa và chữ in thường trong cụm từ đã cho. Bài 2: Cho tập hợp các chữ cái X = {A, C, O} a/ Tìm chụm chữ tạo thành từ các chữ của tập hợp X. b/ Viết tập hợp X bằng cách chỉ ra các tính chất đặc trưng cho các phần tử của X. Hướng dẫn a/ Chẳng hạn cụm từ “CA CAO” hoặc “CÓ CÁ” b/ X = {x: x-chữ cái trong cụm chữ “CA CAO”} Bài 3: Chao các tập hợp A = {1; 2; 3; 4; 5; 6} ; B = {1; 3; 5; 7; 9} a/ Viết tập hợp C các phần tử thuộc A và không thuộc B. b/ Viết tập hợp D các phần tử thuộc B và không thuộc A. c/ Viết tập hợp E các phần tử vừa thuộc A vừa thuộc B. d/ Viết tập hợp F các phần tử hoặc thuộc A hoặc thuộc B. Hướng dẫn: a/ C = {2; 4; 6} b/ D = {5; 9} c/ E = {1; 3; 5} d/ F = {1; 2; 3; 4; 5; 6; 7; 8; 9} Bài 4: Cho tập hợp A = {1; 2; a; b} a/ Hãy chỉ rõ các tập hợp con của A có 1 phần tử. b/ Hãy chỉ rõ các tập hợp con của A có 2 phần tử. c/ Tập hợp B = {a, b, c} có phải là tập hợp con của A không? Hướng dẫn a/ {1} { 2} { a } { b} b/ {1; 2} {1; a} {1; b} {2; a} {2; b} { a; b} c/ Tập hợp B không phải là tập hợp con của tập hợp A bởi vì c nhưng c Tiết 2 Dạng 2: Các bài tập về xác định số phần tử của một tập hợp Bài 1: Gọi A là tập hợp các số tự nhiên có 3 chữ số. Hỏi tập hợp A có bao nhiêu phần tử? Hướng dẫn: Tập hợp A có (999 – 100) + 1 = 900 phần tử. Bài 2: Hãy tính số phần tử của các tập hợp sau: a/ Tập hợp A các số tự nhiên lẻ có 3 chữ số. b/ Tập hợp B các số 2, 5, 8, 11, , 296. c/ Tập hợp C các số 7, 11, 15, 19, , 283. Hướng dẫn a/ Tập hợp A có (999 – 101):2 +1 = 450 phần tử. b/ Tập hợp B có (296 – 2 ): 3 + 1 = 99 phần tử. c/ Tập hợp C có (283 – 7 ):4 + 1 = 70 phần tử. Cho HS phát biểu tổng quát: Tập hợp các số chẵn từ số chẵn a đến số chẵn b có (b – a) : 2 + 1 phần tử. Tập hợp các số lẻ từ số lẻ m đến số lẻ n có (n – m) : 2 + 1 phần tử. Tập hợp các số từ số c đến số d là dãy số các đều, khoảng cách giữa hai số liên tiếp của dãy là 3 có (d – c ): 3 + 1 phần tử. Bài 3: Cha mua cho em một quyển số tay dày 256 trang. Để tiện theo dõi em đánh số trang từ 1 đến 256. HỎi em đã phải viết bao nhiêu chữ số để đánh hết cuốn sổ tay? Hướng dẫn: - Từ trang 1 đến trang 9, viết 9 số. - Từ trang 10 đến trang 99 có 90 trang, viết 90 . 2 = 180 chữ số. - Từ trang 100 đến trang 256 có (256 – 100) + 1 = 157 trang, cần viết 157 . 3 = 471 số. Vậy em cần viết 9 + 180 + 471 = 660 số. Bài 4: Các số tự nhiên từ 1000 đến 10000 có bao nhiêu số có đúng 3 chữ số giống nhau. Hướng dẫn: - Số 10000 là số duy nhất có 5 chữ số, số này có hơn 3 chữ số giống nhau nên không thoả mãn yêu cầu của bài toán. Vậy số cần tìm chỉ có thể có dạng: , , , với a b là cá chữ số. - Xét số dạng , chữ số a có 9 cách chọn ( a 0) có 9 cách chọn để b khác a. Vậy có 9 . 8 = 71 số có dạng . Lập luận tương tự ta thấy các dạng còn lại đều có 81 số. Suy ta tất cả các số từ 1000 đến 10000 có đúng 3 chữ số giống nhau gồm 81.4 = 324 số. NS: 04/09/2010 ND: Tuần: 3+4 Tiết: 3+4 PHÉP CỘNG VÀ PHÉP NHÂN – PHÉP TRỪ VÀ PHÉP CHIA Thời gian thực hiện: 2 tiết MỤC TIÊU - Ôn tập lại các tính chất của phép cộng và phép nhân, phép trừ và phép chia. - Rèn luyện kỹ năng vận dụng các tính chất trên vào các bài tập tính nhẩm, tính nhanh và giải toán một cách hợp lý. - Vận dụng việc tìm số phần tử của một tập hợp đã được học trước vào một số bài toán. - Hướng dẫn HS cách sử dụng máy tính bỏ túi. - Giới thiệu HS về ma phương. NỘI DUNG Tiết 3 I. Ôn tập lý thuyết. Câu 1: Phép cộng và phép nhân có những tính chất cơ bản nào? Câu 2: Phép trừ và phép chia có những tính chất cơ bản nào? II. Bài tập Dạng 1: Các bài toán tính nhanh Bài 1: Tính tổng sau đây một cách hợp lý nhất. a/ 67 + 135 + 33 b/ 277 + 113 + 323 + 87 ĐS: a/ 235 b/ 800 Bài 2: Tính nhanh các phép tính sau: a/ 8 x 17 x 125 b/ 4 x 37 x 25 ĐS: a/ 17000 b/ 3700 Bài 3: Tính nhanh một cách hợp lí: a/ 997 + 86 b/ 37. 38 + 62. 37 c/ 43. 11; 67. 101; 423. 1001 d/ 67. 99; 998. 34 Hướng dẫn a/ 997 + (3 + 83) = (997 + 3) + 83 = 1000 + 80 = 1083 Sử dụng tính chất kết hợp của phép cộng. Nhận xét: 997 + 86 = (997 + 3) + (86 -3) = 1000 + 83 = 1083. Ta có thể thêm vào số hạng này đồng thời bớt đi số hạng kia với cùng một số. b/ 37. 38 + 62. 37 = 37.(38 + 62) = 37.100 = 3700. Sử dụng tính chất phân phối của phép nhân đối với phép cộng. c/ 43. 11 = 43.(10 + 1) = 43.10 + 43. 1 = 430 + 43 = 4373. 67. 101= 6767 423. 1001 = 423 423 d/ 67. 99 = 67.(100 – 1) = 67.100 – 67 = 6700 – 67 = 6633 998. 34 = 34. (100 – 2) = 34.100 – 34.2 = 3400 – 68 = 33 932 Bái 4: Tính nhanh các phép tính: a/ 37581 – 9999 b/ 7345 – 1998 c/ 485321 – 99999 d/ 7593 – 1997 Hướng dẫn: a/ 37581 – 9999 = (37581 + 1 ) – (9999 + 1) = 37582 – 10000 = 89999 (cộng cùng một số vào số bị trừ và số trừ b/ 7345 – 1998 = (7345 + 2) – (1998 + 2) = 7347 – 2000 = 5347 c/ ĐS: 385322 d/ ĐS: 5596 Tiết 4 Dạng 2: Các bài toán có liên quan đến dãy số, tập hợp Bài 1: Tính 1 + 2 + 3 + + 1998 + 1999 Hướng dẫn - Áp dụng theo cách tích tổng của Gauss - Nhận xét: Tổng trên có 1999 số hạng Do đó S = 1 + 2 + 3 + + 1998 + 1999 = (1 + 1999). 1999: 2 = 2000.1999: 2 = 1999000 Bài 2: Tính tổng của: a/ Tất cả các số tự nhiên có 3 chữ số. b/ Tất cả các số lẻ có 3 chữ số. Hướng dẫn: a/ S1 = 100 + 101 + + 998 + 999 Tổng trên có (999 – 100) + 1 = 900 số hạng. Do đó S1= (100+999).900: 2 = 494550 b/ S2 = 101+ 103+ + 997+ 999 Tổng trên có (999 – 101): 2 + 1 = 450 số hạng. Do đó S2 = (101 + 999). 450 : 2 = 247500 Bài 3: Tính tổng a/ Tất cả các số: 2, 5, 8, 11, , 296 b/ Tất cả các số: 7, 11, 15, 19, , 283 ĐS: a/ 14751 b/ 10150 Các giải tương tự như trên. Cần xác định số các số hạng trong dãy sô trên, đó là những dãy số cách đều. 15 10 12 Bài 4: Điền vào các ô còn lại để được một ma phương cấp 3 có tổng các số theo hàng, theo cột bằng 42. 15 10 17 16 14 12 11 18 13 Hướng dẫn: NS: 16/08/2010 ND: Tuần: 5+6 Tiết: 5+6 LUỸ THỪA VỚI SỐ MŨ TỰ NHIÊN Thời gian thực hiện: 2 tiết. A> MỤC TIÊU - Ôn lại các kiến thức cơ bản về luỹ thừa với số mũ tự nhiên như: Lũy thừa bậc n của số a, nhân, chia hai luỹ thừa cùng có số, - Rèn luyện tính chính xác khi vận dụng các quy tắc nhân, chia hai luỹ thừa cùng cơ số - Tính bình phương, lập phương của một số. Giới thiệu về ghi số cho máy tính (hệ nhị phân). - Biết thứ tự thực hiện các phép tính, ước lượng kết quả phép tính. B> NỘI DUNG Tiết 5 I. Ôn tập lý thuyết. 1. Lũy thừa bậc n của số a là tích của n thừa số bằng nhau, mỗi thừa số bằng a n thừa số a ( n 0). a gọi là cơ số, no gọi là số mũ. 2. Nhân hai luỹ thừa cùng cơ số 3. Chia hai luỹ thừa cùng cơ số ( a0, m n) Quy ước a0 = 1 ( a0) 4. Luỹ thừa của luỹ thừa 5. Luỹ thừa một tích 6. Một số luỹ thừa của 10: - Một nghìn: 1 000 = 103 - Một vạn: 10 000 = 104 - Một triệu: 1 000 000 = 106 - Một tỉ: 1 000 000 000 = 109 n thừa số 0 Tổng quát: nếu n là số tự nhiên khác 0 thì: 10n = II. Bài tập Dạng 1: Các bài toán về luỹ thừa Bài 1: Viết các tích sau đây dưới dạng một luỹ thừa của một số: a/ A = 82.324 b/ B = 273.94.243 ĐS: a/ A = 82.324 = 26.220 = 226. hoặc A = 413 b/ B = 273.94.243 = 322 Bài 2: Tìm các số mũ n sao cho luỹ thừa 3n thảo mãn điều kiện: 25 < 3n < 250 Hướng dẫn Ta có: 32 = 9, 33 = 27 > 25, 34 = 41, 35 = 243 250 Vậy với số mũ n = 3,4,5 ta có 25 < 3n < 250 Bài 3: So sách các cặp số sau: a/ A = 275 và B = 2433 b/ A = 2 300 và B = 3200 Hướng dẫn a/ Ta có A = 275 = (33)5 = 315 và B = (35)3 = 315 Vậy A = B b/ A = 2 300 = 33.100 = 8100 và B = 3200 = 32.100 = 9100 Vì 8 < 9 nên 8100 < 9100 và A < B. Ghi chú: Trong hai luỹ thừa có cùng cơ số, luỹ thừa nào có cơ số lớn hơn thì lớn hơn. Tiết 6 Dạng 3: Thứ tự thực hiện các phép tính - ước lượng các phép tính - Yêu cầu HS nhắc lại thứ tự thực hiện các phép tính đã học. - Để ước lượng các phép tính, người ta thường ước lượng các thành phần của phép tính Bài 1: Tính giá trị của biểu thức: A = 2002.20012001 – 2001.20022002 Hướng dẫn A = 2002.(20010000 + 2001) – 2001.(20020000 + 2002) = 2002.(2001.104 + 2001) – 2001.(2002.104 + 2001) = 2002.2001.104 + 2002.2001 – 2001.2002.104 – 2001.2002 = 0 Bài 2: Thực hiện phép tính a/ A = (456.11 + 912).37 : 13: 74 b/ B = [(315 + 372).3 + (372 + 315).7] : (26.13 + 74.14) ĐS: A = 228 B = 5 Bài 3: Tính giá trị của biểu thức a/ 12:{390: [500 – (125 + 35.7)]} b/ 12000 –(1500.2 + 1800.3 + 1800.2:3) ĐS: a/ 4 b/ 2400 Dạng 5: Tìm x Tìm x, biết: a/ 541 + (218 – x) = 735 (ĐS: x = 24) b/ 96 – 3(x + 1) = 42 (ĐS: x = 17) c/ ( x – 47) – 115 = 0 (ĐS: x = 162) d/ (x – 36):18 = 12 (ĐS: x = 252) NS: ND: Tuần: 7+8 Tiết: 7+8 DẤU HIỆU CHIA HẾT Thời gian thực hiện: 2 tiết. A> MỤC TIÊU - HS được củng cố khắc sâu các kiến thức về dấu hiệu chia hết cho 2, 3, 5 và 9. - Vận dụng thành thạo các dấu hiệu chia hết để nhanh chóng nhận ra một số, một tổng hay một hiệu có chia hết cho 2, 3, 5, 9. B> NỘI DUNG Tiết 7 I. Ôn tập lý thuyết. Câu 1: Nêu dấu hiệu chia hết cho 2, cho 5. Câu 2: Nêu dấu hiệu chia hết cho 3, cho 9. Câu 3: Những số như thế nào thì chia hết cho 2 và 3? Cho VD 2 số như vậy. Câu 4: Những số như thế nào thì chia hết cho 2, 3 và 5? Cho VD 2 số như vậy. Câu 5: Những số như thế nào thì chia hết cho cả 2, 3, 5 và 9? Cho VD? II. Bài tập Dạng 1: Bài 1: Cho số , thay dấu * bởi chữ số nào để: a/ A chia hết cho 2 b/ A chia hết cho 5 c/ A chia hết cho 2 và cho 5 Hướng dẫn a/ A 2 thì * { 0, 2, 4, 6, 8} b/ A 5 thì * { 0, 5} c/ A 2 và A 5 thì * { 0} Bài 2 ... cộng, trừ hai phân số cùng mẫu, không cùng mẫu. - Rèn luyện kỹ năng cộng, trừ phân số. Biết áp dụng các tính chất của phép cộng, trừ phân số vào việc giải bài tập. - Áp dụng vào việc giải các bài tập thực tế B> NỘI DUNG Tiết 27 I. Câu hỏi ôn tập lý thuyết Câu 1: Nêu quy tắc cộng hai phân số cùng mẫu. AD tính Câu 2: Muốn cộng hai phân số không cùng mẫu ta thực hiện thế nào? Câu 3 Phép cộng hai phân số có những tính chất cơ bản nào? Câu 4: Thế nào là hai số đối nhau? Cho VD hai số đối nhau. Câu 5: Muốn thực hiện phép trừ phân số ta thực hiện thế nào? II. Bài tập Bài 1: Cộng các phân số sau: a/ b/ c/ d/ Hướng dẫn ĐS: a/ b/ c/ d/ Bài 2: Tìm x biết: a/ b/ c/ Hướng dẫn ĐS: a/ b/ c/ Bài 3: Cho và So sánh A và B Hướng dẫn Hai phân số có từ số bằng nhau, 102005 +1 10 B Từ đó suy ra A > B Bài 4: Có 9 quả cam chia cho 12 người. Làm cách nào mà không phải cắt bất kỳ quả nào thành 12 phần bằng nhau? Hướng dẫn - Lấu 6 quả cam cắt mỗi quả thành 2 phần bằng nhau, mỗi người được ½ quả. Còn lại 3 quả cắt làm 4 phần bằng nhau, mỗi người được ¼ quả. Như vạy 9 quả cam chia đều cho 12 người, mỗi người được (quả). Chú ý 9 quả cam chia đều cho 12 người thì mỗi người được 9/12 = ¾ quả nên ta có cách chia như trên. Tiết 28 Bài 5: Tính nhanh giá trị các biểu thức sau: Hướng dẫn Bài 6: Tính theo cách hợp lí: a/ b/ Hướng dẫn a/ b/ Bài 7: Tính: a/ b/ ĐS: a/ b/ Bài 8: Tìm x, biết: a/ b/ c/ d/ ĐS: a/ b/ c/ d/ NS: ND: Tuần: 29+30 Tiết: 29+30 PHÉP NHÂN VÀ PHÉP CHIA PHÂN SỐ Thời gian thực hiện: 2 tiết. A> MỤC TIÊU - HS biết thực hiện phép nhân và phép chia phân số. - Nắm được tính chất của phép nhân và phép chia phân số. Áp dụng vào việc giải bài tập cụ thể. - Ôn tập về số nghịch đảo, rút gọn phân số - Rèn kỹ năng làm toán nhân, chia phân số. B> NỘI DUNG Tiết 29: I. Câu hỏi ôn tập lý thuyết Câu 1: Nêu quy tắc thực hiện phép nhân phân số? Cho VD Câu 2: Phép nhân phân số có những tính chất cơ bản nào? Câu 3: Hai số như thế nào gọi là hai số nghịch đảo của nhau? Cho VD. Câu 4. Muốn chia hai phân số ta thực hiện như thế nào? II. Bài toán Bài 1: Thực hiện phép nhân sau: a/ b/ c/ d/ Hướng dẫn ĐS: a/ b/ c/ d/ Bài 2: Tìm x, biết: a/ x - = b/ c/ d/ Hướng dẫn a/ x - = b/ c/ d/ Bài 3: Lớp 6A có 42 HS được chia làm 3 loại: Giỏi, khá, Tb. Biết rằng số HSG bằng 1/6 số HS khá, số HS Tb bằng 1/5 tổng số HS giỏi và khá. Tìm số HS của mỗi loại. Hướng dẫn Gọi số HS giỏi là x thì số HS khá là 6x, số học sinh trung bình là (x + 6x). Mà lớp có 42 học sinh nên ta có: Từ đó suy ra x = 5 (HS) Vậy số HS giỏi là 5 học sinh. Số học sinh khá là 5.6 = 30 (học sinh) SÁô học sinh trung bình là (5 + 30):5 = 7 (HS) Bài 4: Tính giá trị của cắc biểu thức sau bằng cach tính nhanh nhất: a/ b/ c/ Hướng dẫn a/ b/ c/ Tiết 30: Bài 5: Tìm các tích sau: a/ b/ Hướng dẫn a/ b/ Bài 6: Tính nhẩm a/ b. c/ d/ Bài 7: Lúc 6 giờ 50 phút bạn Việt đi xe đạp từ A đến B với vận tốc 15 km/h. Lúc 7 giờ 10 phút bạn Nam đi xe đạp từ B đến A với vận tốc 12 km/h/ Hai bạn gặp nhau ở C lúc 7 giờ 30 phút. Tính quãng đường AB. Hướng dẫn Thời gian Việt đi là: 7 giờ 30 phút – 6 giờ 50 phút = 40 phút = giờ Quãng đường Việt đi là: =10 (km) Thời gian Nam đã đi là: 7 giờ 30 phút – 7 giờ 10 phút = 20 phút = giờ Quãng đường Nam đã đi là (km) Bài 8: Thực hiện phép tính chia sau: a/ ; b/ c/ d/ Bài 9: Tìm x biết: a/ b/ c/ Hướng dẫn a/ b/ c/ NS: ND: Tuần: 31+32 Tiết: 31+32 HỖN SỐ. SỐ THẬP PHÂN. PHẦN TRĂM Thời gian thực hiện: 2 tiết. A> MỤC TIÊU - Ôn tập về hỗn số, số thập phân, phân số thập phân, phần trăm - Học sinh biết viết một phân số dưới dạng hỗn số và ngược lại. - Làm quen với các bài toán thực tế B> NỘI DUNG Tiết 31 Bài tập Bài 1: 1/ Viết các phân số sau đây dưới dạng hỗn số: 2/ Viết các hỗn số sau đây dưới dạng phân số: 3/ So sánh các hỗn số sau: và ; và ; và Hướng dẫn: 1/ 2/ 3/ Muốn so sánh hai hỗn số có hai cách: - Viết các hỗn số dưới dạng phân số, hỗn số có phân số lớn hơn thì lớn hơn - So sánh hai phần nguyên: + Hỗn số nào có phần nguyên lớn hơn thì lớn hơn. + Nếu hai phần nguyên bằng nhau thì so sánh hai phân số đi kèm, hỗn số có phân số đi kèm lớn hơn thì lớn hơn. Ở bài này ta sử dụng cách hai thì ngắn gọn hơn: ( do 4 > 3), (do , hai phân số có cùng tử số phân số nsò có mssũ nhỏ hơn thì lớn hơn). Tiết 32 Bài 4: Tìm 5 phân số có mẫu là 5, lớn hơn 1/5 và nhỏ hơn . Hướng dẫn: Bài 5: Hai ô tô cùng xuất phát từ Hà Nội đi Vinh. Ô tô thứ nhất đo từ 4 giờ 10 phút, ô tô thứ hai đia từ lúc 5 giờ 15 phút. a/ Lúc giờ cùng ngày hai ôtô cách nhau bao nhiêu km? Biết rằng vận tốc của ôtô thứ nhất là 35 km/h. Vận tốc của ôtô thứ hai là km/h. b/ Khi ôtô thứ nhất đến Vinh thì ôtô thứ hai cách Vinh bao nhiêu Km? Biết rằng Hà Nội cách Vinh 319 km. Hướng dẫn: a/ Thời gian ô tô thứ nhất đã đi: (giờ) Quãng đường ô tô thứ nhất đã đi được: (km) Thời gian ô tô thứ hai đã đi: (giờ) Quãng đường ô tô thứ hai đã đi: (km) Lúc 11 giờ 30 phút cùng ngày hai ô tô cách nhau: (km) b/ Thời gian ô tô thứ nhất đến Vinh là: (giờ) Ôtô đến Vinh vào lúc: (giờ) Khi ôtô thứ nhất đến Vinh thì thời gian ôtô thứ hai đã đi: (giờ) Quãng đường mà ôtô thứ hai đi được: (km) Vậy ôtô thứ nhất đến Vinh thì ôtô thứ hai cách Vinh là: 319 – 277 = 42 (km) Bài 6: Tổng tiền lương của bác công nhân A, B, C là 2.500.000 đ. Biết 40% tiền lương của bác A vằng 50% tiền lương của bác B và bằng 4/7 tiền lương của bác C. Hỏi tiền lương của mỗi bác là bao nhiêu? Hướng dẫn: 40% = , 50% = Quy đồng tử các phân số được: Như vậy: lương của bác A bằng lương của bác B và bằng lương của bác C. Suy ra, lương của bác A bằng lương của bác B và bằng lương của bác C. Ta có sơ đồ như sau: Lương của bác A : 2500000 : (10+8+7) x 10 = 1000000 (đ) Lương của bác B : 2500000 : (10+8+7) x 8 = 800000 (đ) Lương của bác C : 2500000 : (10+8+7) x 7 = 700000 (đ) NS: ND: Tuần: 33+34 Tiết: 33+34 TÌM GIÁ TRỊ PHÂN SỐ CỦA MỘT SỐ CHO TRƯỚC Thời gian thực hiện: 2 tiết. A> MỤC TIÊU - Ôn tập lại quy tắc tìm giá trị phân số của một số cho trước - Biết tìm giá trị phân số của một số cho trước và ứng dụng vào việc giải các bài toán thực tế. - Học sinh thực hành trên máy tính cách tìm giá trị phân số của một số cho trước. B> NỘI DUNG Tiết 33 Bài 1: Nêu quy tắc tìm giá trị phân số của một số cho trước. Áp dụng: Tìm của 14 Bài 2: Tìm x, biết: a/ b/ Hướng dẫn: a/ 75x = .200 = 2250 x = 2250: 75 = 30. b/ Áp dụng tính chất phân phối của phép nhân đối với phép trừ ta có: Áp dụng mối quan hệ giữa số bị trừ, số trừ và hiệu ta có: Áp dụng quan hệ giữa các số hạng của tổng và tổng ta có: Bài 3: Trong một trường học số học sinh gái bằng 6/5 số học sinh trai. a/ Tính xem số HS gái bằng mấy phần số HS toàn trường. b/ Nếu số HS toàn trường là 1210 em thì trường đó có bao nhiêu HS trai, HS gái? Hướng dẫn: a/ Theo đề bài, trong trường đó cứ 5 phần học sinh nam thì có 6 phần học sinh nữ. Như vậy, nếu học sinh trong toàn trường là 11 phần thì số học sinh nữ chiếm 6 phần, nên số học sinh nữ bằng số học sinh toàn trường. Số học sinh nam bằng số học sinh toàn trường. b/ Nếu toàn tường có 1210 học sinh thì: Số học sinh nữ là: (học sinh) Số học sinh nam là: (học sinh) Tiết 34 Bài 4: Một miếng đất hình chữ nhật dài 220m, chiều rộng bằng ¾ chiều lài. Người ta trông cây xung quanh miếng đất, biết rằng cây nọ cách cây kia 5m và 4 góc có 4 cây. Hỏi cần tất cả bao nhiêu cây? Hướng dẫn: Chiều rộng hình chữ nhật: (m) Chu vi hình chữ nhật: (m) Số cây cần thiết là: 770: 5 = 154 (cây) Bài 5: Ba lớp 6 có 102 học sinh. Số HS lớp A bằng 8/9 số HS lớp B. Số HS lớp C bằng 17/16 số HS lớp A. Hỏi mỗi lớp có bao nhiêu học sinh? Hướng dẫn: Số học sinh lớp 6B bằng học sinh lớp 6A (hay bằng ) Số học sinh lớp 6C bằng học sinh lớp 6A Tổng số phần của 3 lớp: 18+16+17 = 51 (phần) Số học sinh lớp 6A là: (102 : 51) . 16 = 32 (học sinh) Số học sinh lớp 6B là: (102 : 51) . 18 = 36 (học sinh) Số học sinh lớp 6C là: (102 : 51) . 17 = 34 (học sinh) Bài 6: 1/ Giữ nguyên tử số, hãy thay đổi mẫu số của phân số soa cho giá trị của nó giảm đi giá trị của nó. Mẫu số mới là bao nhiêu? Hướng dẫn Gọi mẫu số phải tìm là x, theo đề bài ta có: Vậy x = Bài 7: Ba tổ công nhân trồng được tất cả 286 cây ở công viên. Số cây tổ 1 trồng được bằng số cây tổ 2 và số cây tổ 3 trồng được bằng số cây tổ 2. Hỏi mỗi tổ trồng được bao nhiêu cây? Hướng dẫn: 90 cây; 100 cây; 96 cây. NS: ND: Tuần: 35 Tiết: 35 TÌM MỘT SỐ BIẾT GIÁ TRỊ PHÂN SỐ CỦA NÓ A> MỤC TIÊU - HS nhận biết và hiểu quy tắc tìm một số biết giá trị một phan số của nó - Có kĩ năng vận dụng quy tắc đó, ứng dụng vào việc giải các bài toán thực tế. - Học sinh thực hành trên máy tính cách tìm giá trị phân số của một số cho trước. B> NỘI DUNG Bài tập Bài 1: 1/ Một lớp học có số HS nữ bằng số HS nam. Nếu 10 HS nam chưa vào lớp thì số HS nữ gấp 7 lần số HS nam. Tìm số HS nam và nữ của lớp đó. 2/ Trong giờ ra chơi số HS ở ngoài bằng 1/5 số HS trong lớp. Sau khi 2 học sinh vào lớp thì số số HS ở ngoài bừng 1/7 số HS ở trong lớp. Hỏi lớp có bao nhiêu HS? Hướng dẫn: 1/ Số HS nam bằng số HS nữ, nên số HS nam bằng số HS cả lớp. Khi 10 HS nam chưa vào lớp thì số HS nam bằng số HS nữ tức bằng số HS cả lớp. Vậy 10 HS biểu thị - = (HS cả lớp) Nên số HS cả lớp là: 10 : = 40 (HS) Số HS nam là : 40. = 15 (HS) Số HS nữ là : 40. = 25 (HS) 2/ Lúc đầu số HS ra ngoài bằng số HS trong lớp, tức số HS ra ngoài bằng số HS trong lớp. Sau khi 2 em vào lớp thì số HS ở ngoài bằng số HS của lớp. Vậy 2 HS biểu thị - = (số HS của lớp) Vậy số HS của lớp là: 2 : = 48 (HS) Bài 2: 1/ Ba tấm vải có tất cả 542m. Nết cắt tấm thứ nhất , tấm thứ hai , tấm thứ ba bằng chiều dài của nó thì chiều dài còn lại của ba tấm bằng nhau. Hỏi mỗi tấm vải bao nhiêu mét? Hướng dẫn: Ngày thứ hai hợp tác xã gặt được: (diện tích lúa) Diện tích còn lại sau ngày thứ hai: (diện tích lúa) diện tích lúa bằng 30,6 a. Vậy trà lúa sớm hợp tác xã đã gặt là: 30,6 : = 91,8 (a) Bài 3: Một người có xoài đem bán. Sau khi án được 2/5 số xoài và 1 trái thì còn lại 50 trái xoài. Hỏi lúc đầu người bán có bao nhiêu trái xoài Hướng dẫn Cách 1: Số xoài lức đầu chia 5 phần thì đã bắn 2 phần và 1 trái. Như vậy số xoài còn lại là 3 phần bớt 1 trsi tức là: 3 phần bằng 51 trái. Số xoài đã có là trái Cách 2: Gọi số xoài đem bán có a trái. Số xoài đã bán là Số xoài còn lại bằng: (trái)
Tài liệu đính kèm: