Bài 3: (2,5 điểm)
a) Cho đa thức . Tìm số dư trong phép chia đa thức cho đa thức .
b) Chứng minh bất đẳng thức: . Với là các số dương.
Áp dụng bất đẳng thức trên tìm giá trị nhỏ nhất của .
ĐỀ THI KIỂM ĐỊNH CHẤT LƯỢNG MŨI NHỌN. NĂM HỌC 2008-2009 MÔN THI: TOÁN 8 (Thời gian làm bài 120 phút) Bài 1 (1,0 điểm) Phân tích các đa thức sau thành nhân tử: a) x2 – x – 12; b) x2 + 2xy + 4y – 4; Bài 2: (2,5 điểm) Cho biểu thức: P = Tìm x để P xác định. Rút gọn P. Tìm giá trị nguyên của x để P nhận giá trị nguyên? Bài 3: (2,5 điểm) Cho đa thức . Tìm số dư trong phép chia đa thức cho đa thức . Chứng minh bất đẳng thức: . Với là các số dương. Áp dụng bất đẳng thức trên tìm giá trị nhỏ nhất của . với dương và . Bài 4: (2,5 điểm) ABCD là hình chữ nhật có AB //CD, AB = 2CB. Từ A kẻ đường thẳng vuông góc với đường chéo BD tại H. Trên HB lấy điểm K sao cho HK = HA. Từ K kẻ đường thẳng song song với AH cắt AB tại E. Chứng minh E là trung điểm AB. Lấy M trung điểm DE, tia AM cắt DB tại N, cắt DC tại P Tính tỷ số diện tích tam giác AND với diện tam giác PMD? Câu 5:(1,5 điểm) Cho trước góc xOy; tỷ số và một điểm P nằm trong góc xOy. Dựng đường thẳng đi qua P cắt các cạnh Ox, Oy lần lượt tại C và D sao cho: . (Chỉ trình bày cách dựng và chứng minh)
Tài liệu đính kèm: