Đề cương ôn tập môn Toán Lớp 7 - Học kỳ II

Đề cương ôn tập môn Toán Lớp 7 - Học kỳ II

II) ÑAÏI SOÁ:

1) Taàn soá cuûa moät giaù trò laø gì? Baûng taàn soá cuûa caùc giaù trò ñöôïc trình baøy nhö theá naøo?

2) Soá trung bình coäng cuûa moät daáu hieäu ñöôïc tính nhö theá naøo? neâu yù nghóa cuûa soá trung bình coäng

3) Moát cuûa daáu hieäu laø gì?

4) Laøm theá naøo ñeå tính ñöôïc giaù trò cuûa moät BTÑS taïi giaù trò cho tröôùc cuûa caùc bieán

5) Theá naøo laø ñôn thöùc, caùch tìm baäc, caùch nhaân hai ñôn thöùc.

6) Theá naøo laø hai ñôn thöùc ñoàng daïng. Neâu quy taéc coäng –tröø caùc ñôn thöùc ñoàng daïng.

7) Theá naøo laø ña thöùc, caùch tìm baäc cuûa ña thöùc.

8) Theá naøo laø ña thöùc moät bieán, caùch coäng, tröø caùc ña thöùc moät bieán

9) Theá naøo laø nghieäm cuûa moät ña thöùc moät bieán.

B) PHAÀN BAØI TAÄP:

 TÖÏ LUAÄN:

Dạng : Bài toán thống kê.

Bài 1: Thời gian làm bài tập của các hs lớp 7 tính bằng phút đươc thống kê bởi bảng sau:

a- Dấu hiệu ở đây là gì? Số các giá trị là bao nhiêu?

b- Lập bảng tần số? Tìm mốt của dấu hiệu?Tính số trung bình cộng?

c- Vẽ biểu đồ đoạn thẳng?

 đơn thức: Thu gọn đơn thức, tìm bậc, hệ số.

 A = ; B=

 đa thức : Bài tập áp dụng : Thu gọn đa thức, tìm bậc, hệ số cao nhất.

giá trị của đa thức ( biểu thức):

Bài tập áp dụng :

Bài 1 : Tính giá trị biểu thức

a. A = 3x3 y + 6x2y2 + 3xy3 tại

b. B = x2 y2 + xy + x3 + y3 tại x = –1; y = 3

Bài 2 : Cho đa thức

P(x) = x4 + 2x2 + 1;

Q(x) = x4 + 4x3 + 2x2 – 4x + 1;

Tính : P(–1); P( ); Q(–2); Q(1);

 Cộng, trừ đa thức nhiều biến:

Bài tập áp dụng:

Bài 1 : Cho đa thức :

 A = 4x2 – 5xy + 3y2; B = 3x2 + 2xy - y2

Tính A + B; A – B

Bài 2 : Tìm đa thức M,N biết :

a. M + (5x2 – 2xy) = 6x2 + 9xy – y2

b. (3xy – 4y2)- N= x2 – 7xy + 8y2

Cộng trừ đa thức một biến:

Bài tập áp dụng :

Bài 1: Cho đa thức

A(x) = 3x4 – 3/4x3 + 2x2 – 3

B(x) = 8x4 + 1/5x3 – 9x + 2/5

Tính : A(x) + B(x); A(x) - B(x); B(x) - A(x);

 Bài 2: Cho các đa thức P(x) = x – 2x2 + 3x5 + x4 + x

 Q(x) = 3 – 2x – 2x2 + x4 – 3x5 – x4 + 4x2

a) Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm của biến.

b) Tính P(x) + Q(x) và P(x) – Q(x).

c) Chứng minh rằng x = 0 là nghiệm của P(x) nhưng không là nghiệm của Q(x)

 

doc 5 trang Người đăng lananh572 Lượt xem 717Lượt tải 0 Download
Bạn đang xem tài liệu "Đề cương ôn tập môn Toán Lớp 7 - Học kỳ II", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ÑEÀ CÖÔNG OÂN TAÄP HKII
PHAÀN LYÙ THUYEÁT:
I) HÌNH HOÏC:
Phaùt bieåu caùc tröôøng hôïp baèng nhau cuûa tam giaùc – Cuûa tam giaùc vuoâng.
Theá naøo laø tam giaùc caân – tam giaùc ñeàu, neâu tính chaát cuûa chuùng.
Phaùt bieåu ñònh lyù PyThagore.Tam giaùc coù ñieàu kieän gì thì tam giaùc ñoù vuoâng.
Neâu ñ/lyù veà quan heä giöõa: a) Goùc & caïnh ñoái dieän trong tam giaùc. b) Ñöôøng vuoâng goùc & ñöôøng xieân, ñöôøng xieân & hình chieáu. c) Baát ñaúng thöùc tam giaùc.
Neâu ñònh nghóa: ñöôøng trung tuyeán – ñöôøng phaân giaùc – ñöôøng cao – ñöôøng trung tröïc cuûa tam giaùc. Neâu t/c ñöôøng phaân giaùc cuûa moät goùc, ñöôøng trung tröïc cuûa ñoaïn thaúng.
Neâu tính chaát: ba ñöôøng trung tuyeán – ba ñöôøng phaân giaùc – ba ñöôøng cao –ba ñöôøng trung tröïc cuûa tam giaùc.
II) ÑAÏI SOÁ:
Taàn soá cuûa moät giaù trò laø gì? Baûng taàn soá cuûa caùc giaù trò ñöôïc trình baøy nhö theá naøo?
Soá trung bình coäng cuûa moät daáu hieäu ñöôïc tính nhö theá naøo? neâu yù nghóa cuûa soá trung bình coäng 
Moát cuûa daáu hieäu laø gì?
Laøm theá naøo ñeå tính ñöôïc giaù trò cuûa moät BTÑS taïi giaù trò cho tröôùc cuûa caùc bieán
Theá naøo laø ñôn thöùc, caùch tìm baäc, caùch nhaân hai ñôn thöùc.
Theá naøo laø hai ñôn thöùc ñoàng daïng. Neâu quy taéc coäng –tröø caùc ñôn thöùc ñoàng daïng.
Theá naøo laø ña thöùc, caùch tìm baäc cuûa ña thöùc.
Theá naøo laø ña thöùc moät bieán, caùch coäng, tröø caùc ña thöùc moät bieán
Theá naøo laø nghieäm cuûa moät ña thöùc moät bieán.
B) PHAÀN BAØI TAÄP:
 TÖÏ LUAÄN: 
Dạng : Bài toán thống kê.
Bài 1: Thời gian làm bài tập của các hs lớp 7 tính bằng phút đươc thống kê bởi bảng sau:
4 5 6 7 6 7	 6	4 6 	 7	 6	 8	5	6	
5 7	 8 8 9 7	 8	8 8	 10	 9	11	8	9	
4 6	 7 7 7 8 5	8 10 9 9 8
Dấu hiệu ở đây là gì? Số các giá trị là bao nhiêu?
Lập bảng tần số? Tìm mốt của dấu hiệu?Tính số trung bình cộng? 
Vẽ biểu đồ đoạn thẳng?
 đơn thức: Thu gọn đơn thức, tìm bậc, hệ số.
	A = ; 	B=
 đa thức : Bài tập áp dụng : Thu gọn đa thức, tìm bậc, hệ số cao nhất.
giá trị của đa thức ( biểu thức):
Bài tập áp dụng :
Bài 1 : Tính giá trị biểu thức
a. A = 3x3 y + 6x2y2 + 3xy3 tại 
b. B = x2 y2 + xy + x3 + y3 tại x = –1; y = 3
Bài 2 : Cho đa thức
P(x) = x4 + 2x2 + 1; 
Q(x) = x4 + 4x3 + 2x2 – 4x + 1; 
Tính : P(–1); P(); Q(–2); Q(1); 
 Cộng, trừ đa thức nhiều biến:
Bài tập áp dụng:
Bài 1 : Cho đa thức :
	A = 4x2 – 5xy + 3y2; 	B = 3x2 + 2xy - y2
Tính A + B; A – B
Bài 2 : Tìm đa thức M,N biết :
M + (5x2 – 2xy) = 6x2 + 9xy – y2	
(3xy – 4y2)- N= x2 – 7xy + 8y2
Cộng trừ đa thức một biến:
Bài tập áp dụng :
Bài 1: Cho đa thức 
A(x) = 3x4 – 3/4x3 + 2x2 – 3	
B(x) = 8x4 + 1/5x3 – 9x + 2/5	
Tính : A(x) + B(x); 	A(x) - B(x); 	B(x) - A(x);
 Bài 2: Cho các đa thức P(x) = x – 2x2 + 3x5 + x4 + x 
	 Q(x) = 3 – 2x – 2x2 + x4 – 3x5 – x4 + 4x2
Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm của biến.
Tính P(x) + Q(x) và P(x) – Q(x).
Chứng minh rằng x = 0 là nghiệm của P(x) nhưng không là nghiệm của Q(x)
 nghiệm của đa thức 1 biến :
Bài tập áp dụng :
Bài 1 : Tìm nghiệm của đa thức f(x) = x4 + 2x3 – 2x2 – 6x - x4+2x2-x3 +8x-x3-2
Bài 2 : Tìm nghiệm của các đa thức sau.
	f(x) = 3x – 6; 	h(x) = –5x + 30	g(x)=(x-3)(16-4x)
Bài 3 : Cho đa thức P(x) = mx – 3. Xác định m biết rằng P(–1) = 2
Bài 4 : Cho đa thức Q(x) = -2x2 +mx -7m+3. Xác định m biết rằng Q(x) có nghiệm là -1.
BAØI 1: Tính giaù trò cuûa bieåu thöùc: A = 4x2 - 3çxï -2 taïi x = 2	; x = -3 ; B = x2 +2xy-3x3+2y3+3x-y3 taïi x = 2 ; y = -1 
	x2+2xy+y2 taïi x= 2; y = 3; C= 3x2 -2x- 5 taïi x= 5/3
BAØI 2: Tính: 	a) 	b) 
BAØI 3: Trong caùc ñôn thöùc sau: a, b laø caùc haèng soá, x, y laø caùc bieán:
	;;; D= 
E = 
	a) Thu goïn caùc ñôn thöùc treân
	b) Xaùc ñònh heä soá cuûa moãi ñôn thöùc
	c) Xaùc ñònh baäc cuûa moãi ñôn thöùc ñoái vôùi töøng bieán vaø baäc cuûa moãi ña thöùc
BAØI 4: Cho A = x3y 	B = x2y2	C = xy3
	Chöùng minh raèng: A.C + B2 – 2x4y4 = 0 
BAØI 5: Cho hai ña thöùc: A = 15x2y – 7xy2 –6y3	B = 2x3 –12x2y +7xy2
	a) Tính A + B vaø A - B
	b) Tính giaù trò cuûa ña thöùc A + B , A – B vôùi x = 1, y = 3
Baøi 6: Cho ña thöùc A = x2-2y+xy+1; B = x2+ y- x2y2 –1
Tìm ña thöùc C sao cho : 	a. C = A + B	b. C+A = B
BAØI 7: Cho hai ña thöùc: 	f(x) = 
	g(x) = 
	a) Tính f(x) + g(x) sau khi saép xeáp caùc ña thöùc theo luõy thöøa giaûm daàn cuûa bieán
	b) Tính f(x) - g(x)
BAØI 8: Cho ña thöùc 	f(x) = 2x3+ x2- 3x – 1
g(x) = -x3+3x2+ 5x-1
h(x) = -3x3 + 2x2 – x – 3
a) Tính P(x) = f(x)- g(x); R(x) = P(x) + h(x)
b) Tìm nghieäm cuûa ña thöùc R(x)
BAØI 9: Cho ña thöùc f(x) = x3-2 x2+7x – 1
g(x) = x3-2x2- x -1
Tính f(x) - g(x); f(x) + g(x);
BAØI 10: Tính giaù trò cuûa bieåu thöùc A = xy+x2y2+x3y3 +..+ x10y10 taïi x = -1; y = 1
BAØI 11: Cho caùc ña thöùc 	A = -3x2 + 4x2 –5x +6
	B = 3x2 - 6x2 + 5x – 4
	a) Tính C = A + B; D = A – B; E = D – C 	b) Tính giaù trò cuûa caùc ña thöùc A, B, C, D, E taïi x = 1
BAØI 12: Tìm nghieäm cuûa caùc ña thöùc:
	a) -3x + 12
	b) 
	c) 
	d) 
	e) (x – 3)(x + 2)
f) (x – 1)(x2 + 1)	
g) ( 5x+5)(3x-6)
h) x2 + x 
BAØI 13: Chöùng toû raèng hai ña thöùc sau khoâng coù nghieäm
	a) P(x) = x2 + 1
	b) Q(x) = 2y4 + 5
	c) H(x) = x2 +2x+2
	d) D(x) = (x-5)2 +1
BAØI 14: Cho ña thöùc: f(x) = x3 + 2x2 + ax + 1
	Tìm a bieát raèng ña thöùc f(x) coù moät nghieäm x = -2
Baøi 15: Thu goïn caùc ñôn thöùc sau :
a./ b./ c./ d./ 
Baøi 16: Cho caùc ña thöùc sau :
P(x) = x2 + 5x4- 3x3+ x2+ 4x4+ 3x3- x+ 5
Q(x) = x- 5x3 - x2- x4+ 4x3- x2+ 3x – 1
Thu goïn vaø saép xeáp caùc ña thöùc treân theo luyõ thöøa giaûm cuûa bieán.
Tính P(x) +Q(x) vaø P(x) - Q(x)
BAØI 1: Cho hai ñoaïn thaúng AB & AC caét nhau taïi trung ñieåm cuûa moãi ñoaïn. ch/m raèng:
a) ∆AOC= ∆BOD
b) AD=BC & AD//BC
BAØI 2: Cho goùc xOy. Goïi Oz laø tia phaân giaùc cuûa noù. Treân tia Ox laáy ñieåm A, treân Oy laáy ñieåm B sao cho OA =OB. M laø moät ñieåm baát kyø treân Oz (M ¹ O).
Chöùng minh: tia OM laø phaân giaùc cuûa AMB vaø ñöôøng thaúng OM laø trung tröïc cuûa ñoaïn AB
BAØI 3: Cho goùc xOy. Treân tia phaân giaùc Oz cuûa goùc xOy laáy ñieån M (M ¹ O). Qua M veõ MH ^ Ox (H Î Ox) vaø MK ^ Oy (KÎ Oy). Chöùng minh: MH = MK
BAØI 4: Cho D ABC vuoâng taïi A.Ñöôøng phaân giaùc BE. Keû EH ^ BC ( H ÎBC) Goïi K laø giao ñieåm cuûa AB vaø HE. Chöùng minh :
DABE = D HBE
BE laø ñöôøng trung tröïc cuûa ñoaïn thaúng AH.
EK = EC
AE < EC
BAØI 5: Cho tam giaùc caân ABC (AB = AC). Caùc tia phaân giaùc cuûa goùc B, C Caét AB vaø AC taïi E, F 
Chöùng minh: BE = CF 
Goïi T laø giao ñieåm cuûa BE vaø CF. Chöùng minh AI laø phaân giaùc cuûa goùc A
BAØI 6: Cho tam giaùc ABC caân taïi A. Treân tia ñoái cuûa tia BC laáy ñieåm M, treân tia ñoái cuûa tia CB laáy ñieåm, N sao cho 
BM = CN
Chöùng minh raèng tam giaùc AMN laø tam giaùc caân
Keû BH ^ AM (H Î AM). Keû CK ^ AN (K Î AN). Chöùng minh raèng BH = CK
Chöùng minh raèng AH = AK
Goïi O laø giao ñieåm cuûa BH vaø CK. Tam giaùc OBC laø tam giaùc gì? Vì sao?
e) Khi BAÂC = 600 vaø BM = CN = BC, haõy tính soá ño caùc goùc cuûa ∆AMN vaø xaùc ñònh daïng cuûa ∆OBC. 
BAØI 7: Cho tam giaùc ABC coù caùc caïnh AB = 20 cm, AC = 15 cm, BC = 25 cm, AH laø ñöôøng cao
a) Chöùng minh tam giaùc ABC vuoâng 
Tính ñoä daøi ñoaïn thaúng BH, CH, bieát AH = 12 cm
BAØI 8: Cho tam giaùc ABC caân taïi A. Coù ñöôøng cao AD. Töø D keû DE ^ AB, DF ^AC. Treân tia ñoái cuûa tia DE laáy ñieåm M sao cho DE = DM.
Chöùng minh :
BE = CF
AD laø ñöôøng trung tröïc cuûa ñoaïn thaúng EF
Tam giaùc EFM laø tam giaùc vuoâng
BE // CM 
Baøi 9: Cho D ABC vuoâng taïi A. Treân caïnh BC ta laáy ñieåm E sao cho BE = BA. Tia phaân giaùc cuûa goùc B caét AC ôû D.
So saùnh ñoä daøi DA vaø DE
Tính soá ño BEÂD
Baøi 10: D ABC vuoâng taïi A. trung tuyeán AM. Treân tia ñoái cuûa tia MA laáy ñieåm D sao cho MD = MA.
Chöùng minh : D AMC = D BMD
C/ m Goùc ABD = 900
Chöùng minh : AM =BC
Baøi 11: D ABC vuoâng taïi C coù AÂ = 600. Tia phaân giaùc cuûa goùc BAC caét BC ôû E. Keû EK vuoâng goùc vôùi AB ( ( D AB ), Keû BD vuoâng goùc tai AE ( D AE ). Chöùng minh
AC = AK vaø AE vuoâng goùc CK
KA =KB
EB > AC
Ba ñöôøng thaúng AC, BD, KE cuøng ñi qua moät ñieåm. 
BAØI 12: Cho tam giaùc ABC coù BÂ= 600. veõ phaân giaùc BD. Töø A keû ñöôøng thaúng vuoâng goùc vôùi BD, caét BD taïi H vaø caét BC taïi E.
Tính soá ño goùc BAH. Chöùng minh Tam giaùc ABE laø tam giaùc ñeàu
Chöùng minh: r DBA = r DBE
Töø A keû ñöôøng thaúng song song vôùi BD caét ñöôøng thaúng BC taïi F. Chöùng minh : r ABF laø tam giaùc caân
BAØI 13: Cho tam giaùc DEF caân taïi D vôùi ñöôøng trung tuyeán DI.
	a) Chöùng minh rDEI = rDFI
	b) Caùc goùc DIE vaø goùc DIF laø nhöõng goùc gì?
	c) Bieát DE = DF = 13 cm, EF = 10 cm haõy tính ñoä daøi ñöôøng trung tuyeán DI
Baøi 14: Cho DABC caân taïi A ( AÂ< 900). Ba ñöôøng cao AH, BD, CE. 
Chöùng minh:DABD = D ACE
Chöùng minh : D HDC caân taïi H
Keû HM vuoâng goùc vôùi AC ( M thuoäc AC). Chöùng minh : DM = MC
Goïi I laø trung ñieåm cuûa HD. Chöùng minh : AH vuoâng goùc vôùi MI
BAØI 15: Cho rABC vuoâng taïi A. bieát AC = 5 cm, trung tuyeán AM = 3,5 cm 
	a) Tính caùc caïnh AB vaø BC cuûa tam giaùc ABC
	b) Tính caùc ñöôøng trung tuyeán BN vaø CP cuûa rABC
BAØI 16 : Cho Cho rABC coù ( AB < AC), phaân giaùc AD. Treân caïnh AC laáy ñieåm E sao cho AE = AB.
Chöùng minh : BD = DE
Goïi F laø giao ñieåm cuûa caùc ñöôøng thaúng AB vaø DE. Chöùng minh DF = DC
Chöùng minh r AFC caân
Chöùng minh : AD vuoâng goùc FC.
Baøi 17 Cho rABC caân taïi A, ñöôøng cao AH. Goïi E laø hình chieáu cuûa H xuoáng AB, F laø hình chieáu cuûa H xuoáng AC. Chöùng minh
rAEH = rAFH
AH laø ñöôøng trung tröïc cuûa EF
Treân tia ñoái cuûa tia EH laáy ñieåm M sao cho EH = EM. Treân tai ñoái cuûa tia FH laáy ñieåm N sao cho FH = FN. Chöùng minh rAMN caân

Tài liệu đính kèm:

  • docON TAP TOAN 7 HKII Long.doc