Giáo án Hình học Lớp 9 - Tiết 4: Tỉ số lượng giác của góc nhọn - Năm học 2007-2008

Giáo án Hình học Lớp 9 - Tiết 4: Tỉ số lượng giác của góc nhọn - Năm học 2007-2008

Hoạt động của thầy Hoạt động của trò Bài ghi

Hoạt động 1: Kiểm tra bài cũ

Hai tam giác vuông ABC, A`B`C` có các góc nhọn B và B` bằng nhau thì hai tam giác vuông đó có đồng dạng với nhau không? Nếu có hãy viết các hệ thức giữa các cạnh của chúng?

Vậy trong tam giác vuông, nếu biết tỉ số độ dài của hai cạnh thì có thể biết được độ lớn của các góc nhọn hay không? Chúnh ta sẽ biết khi nghiên cứu bài hôm nay. Khi đó hai tam giác đồng dạng với nhau.

Hoạt động 2: Kiến thức mở đầu

GV cho HS nhắc lại về khái niệm cạnh kề, cạnh đối trong tam giác.

GV dựa vào phần bài cũ để đi đến nhận xét: Tỉ số giữa cạnh đối và cạnh kề của một góc nhọn trong tam giác vuông đặc trưng cho độ lớn của góc nhọn đó.

Cho HS làm?1/71

Tam giác vuông có một góc bằng 450 thì tam giác đó là tam giác gì?

Nêu đặc điểm về cạnh của tam giác vuông cân?

Hướng dẫn HS muốn tính tỉ số khi góc nhọn của tam giác vuông đó bằng 600 bằng cách vẽ thêm điểm B` đối xứng với B qua AC để lập được tam giác đều BB`C, sau đó tìm được độ dài AC theo AB.

Cho HS đứng tại chỗ chứng minh phận ngược lại

 HS nhắc lại các khái niệm cạnh kề, cạnh đối trong tam giác.

HS làm? 1 vào vở

Tam giác đó là tam giác vuông cân.

Hai cạnh bên bằng nhau.

HS vẽ thêm theo hướng dẫn của GV để tạo được tam giác đều BB`C sau đó áp dụng định lý Pitago để tính độ dài Ac dựa vào AB rồi lập tỉ số tỉ số

HS đứng tại chỗ chứng minh phần ngược lại.

 1. Khái niệm tỉ số lượng giác của một góc nhọn.

?1/71 a/ Khi thì tam giác ABC vuông cân tại A. Do đó AB=AC. Vậy

Ngược lại nếu thì AB=AC nên tam giác ABC vuông cân tại A. Do đó .

b/ Khi , lấy B` đối xứng với B qua AC, ta có tam giác ABC là một nửa của tam giác đều CBB`. Trong tam giác vuông ABC nếu gọi độ dài cạnh AB là a thì BC=BB`=2AB=2a và theo định lý Pitago ta có AC=a. Bởi vậy

Ngược lại nếu thì theo định lý Pitago ta có BC=2AB. Lấy B` đối xứng với B qua AC thì CB=CB`=BB` tức là tam giác BB`C là tam giác đều suy ra

 

doc 2 trang Người đăng lananh572 Lượt xem 186Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án Hình học Lớp 9 - Tiết 4: Tỉ số lượng giác của góc nhọn - Năm học 2007-2008", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tuần: 2
Ngày soạn: 14/09/2007
Tiết 4: Tỉ Số LƯợNG GIáC CủA GóC NHọN
Mục tiêu
HS nắm được tỉ số lượng giác của góc nhọn, định nghĩa các tỉ số lượng giác.
Rèn kỹ năng lập các tỉ số đồng dạng, tính toán nhanh.
Giáo dục tính cẩn thận, khoa học trong trình bày.
Phương tiện dạy học: 
GV:Compa, eke, thước thẳng.
HS: Ôn tập các trường hợp đồng dạng của hai tam giác vuông, thước kẻ, com pa, ê ke.
Tiến trình dạy học:
Hoạt động của thầy
Hoạt động của trò
Bài ghi
Hoạt động 1: Kiểm tra bài cũ
Hai tam giác vuông ABC, A`B`C` có các góc nhọn B và B` bằng nhau thì hai tam giác vuông đó có đồng dạng với nhau không? Nếu có hãy viết các hệ thức giữa các cạnh của chúng?
Vậy trong tam giác vuông, nếu biết tỉ số độ dài của hai cạnh thì có thể biết được độ lớn của các góc nhọn hay không? Chúnh ta sẽ biết khi nghiên cứu bài hôm nay.
Khi đó hai tam giác đồng dạng với nhau.
Hoạt động 2: Kiến thức mở đầu
GV cho HS nhắc lại về khái niệm cạnh kề, cạnh đối trong tam giác.
GV dựa vào phần bài cũ để đi đến nhận xét: Tỉ số giữa cạnh đối và cạnh kề của một góc nhọn trong tam giác vuông đặc trưng cho độ lớn của góc nhọn đó.
Cho HS làm?1/71
Tam giác vuông có một góc bằng 450 thì tam giác đó là tam giác gì?
Nêu đặc điểm về cạnh của tam giác vuông cân?
Hướng dẫn HS muốn tính tỉ số khi góc nhọn của tam giác vuông đó bằng 600 bằng cách vẽ thêm điểm B` đối xứng với B qua AC để lập được tam giác đều BB`C, sau đó tìm được độ dài AC theo AB.
Cho HS đứng tại chỗ chứng minh phận ngược lại
HS nhắc lại các khái niệm cạnh kề, cạnh đối trong tam giác.
HS làm? 1 vào vở
Tam giác đó là tam giác vuông cân.
Hai cạnh bên bằng nhau.
HS vẽ thêm theo hướng dẫn của GV để tạo được tam giác đều BB`C sau đó áp dụng định lý Pitago để tính độ dài Ac dựa vào AB rồi lập tỉ số tỉ số 
HS đứng tại chỗ chứng minh phần ngược lại.
1. Khái niệm tỉ số lượng giác của một góc nhọn.
?1/71 a/ Khi thì tam giác ABC vuông cân tại A. Do đó AB=AC. Vậy 
Ngược lại nếu thì AB=AC nên tam giác ABC vuông cân tại A. Do đó .
b/ Khi , lấy B` đối xứng với B qua AC, ta có tam giác ABC là một nửa của tam giác đều CBB`. Trong tam giác vuông ABC nếu gọi độ dài cạnh AB là a thì BC=BB`=2AB=2a và theo định lý Pitago ta có AC=a. Bởi vậy 
Ngược lại nếu thì theo định lý Pitago ta có BC=2AB. Lấy B` đối xứng với B qua AC thì CB=CB`=BB` tức là tam giác BB`C là tam giác đều suy ra 
Hoạt động 3: Định nghĩa
 Như vậy ta nhận thấy: Khi độ lớn của thay đổi thì tỉ số giữa cạnh đối và cạnh kề của góc cúng thay đổi. Từ đó đưa ra định nghĩa tỉ số lượng giác của góc nhọn
GV cho HS nhắc lại định nghĩa trong SGK/72
Cho HS làm bài? 2 vào vở của mình: Trước tiên tìm trên hình vẽ cạnh đối, cạnh kề với góc B 
Hướng dẫn HS nghiên cứu các ví dụ 1, 2 trong SGK/73
HS nhắc lại định nghĩa các tỉ số lượng giác của một góc nhọn trong SGK/72
HS làm bài vào vở của mình.
Một HS lên bảng trình bày. Các HS khác nhận xét bài làm của bạn
HS nghiên cứu các ví dụ 1 và 2 trong SGK/73
Định nghĩa: Học SGK/72
?2/73
Hoạt động 4: Hướng dẫn dặn dò
Học thuộc định nghĩa các tỉ số lượng giác của một góc nhọn
Bài tập về nhà: 10/76 SGK 
 21,22,23,24/92 SBT
Đọc trước phần còn lại của bài

Tài liệu đính kèm:

  • doct4.doc