A. MỤC TIÊU
- Ôn tập lại khái niệm về bội và ước của một số nguyên và tính chất của nó.
- Biết tìm bội và ước của một số nguyên.
- Thực hiện một số bài tập tổng hợp.
B. KIẾN THỨC
I. Câu hỏi ôn tập lí thuyết:
Câu 1: Nhắc lại khái niệm bội và ước của một số nguyên.
Câu 2: Nêu tính chất bội và ước của một số nguyên.
Câu 3: Em có nhận xét gì xề bội và ước của các số 0, 1, -1?
II. Bài tập
Dạng 1:
Bài 1: Tìm tất cả các ước của 5, 9, 8, -13, 1, -8
Hướng dẫn
Ư(5) = -5, -1, 1, 5
Ư(9) = -9, -3, -1, 1, 3, 9
Ư(8) = -8, -4, -2, -1, 1, 2, 4, 8
Ư(13) = -13, -1, 1, 13
Ư(1) = -1, 1
Ư(-8) = -8, -4, -2, -1, 1, 2, 4, 8
262. Viết biểu thức xác định:
a/ Các bội của 5, 7, 11
b/ Tất cả các số chẵn
c/ Tất cả các số lẻ
Hướng dẫn
a/ Bội của 5 là 5k, kZ
Bội của 7 là 7m, mZ
Bội của 11 là 11n, nZ
b/ 2k, kZ
c/ 2k 1, kZ
Bài 2: Tìm các số nguyên a biết:
a/ a + 2 là ước của 7
b/ 2a là ước của -10.
c/ 2a + 1 là ước của 12
Hướng dẫn
a/ Các ước của 7 là 1, 7, -1, -7 do đó:
+) a + 2 = 1 a = -1
+) a + 2 = 7 a = 5
+) a + 2 = -1 a = -3
+) a + 2 = -7 a = -9
b/ Các ước của 10 là 1, 2, 5, 10, mà 2a là số chẵn do đó: 2a = 2, 2a = 10
? 2a = 2 a = 1
? 2a = -2 a = -1
? 2a = 10 a = 5
? 2a = -10 a = -5
c/ Các ước của 12 là 1, 2, 3,6, 12, mà 2a + 1 là số lẻ do đó: 2a +1 = 1, 2a + 1 = 3
Suy ra a = 0, -1, 1, -2
Buổi 10:14/1/2013 NHÂN HAI Số NGUYÊN - TíNH CHấT CủA PHéP NHÂN A. MụC TIÊU - ÔN tập HS về phép nhân hai số nguyên cùng dấu, khác dấu và tính chất của nhân các số nguyên - Rèn luyện kỹ năng tính toán hợp lý, biết cách chuyển vế, quy tắc bỏ dấu ngoặc. b. KIếN THứC I. Câu hỏi ôn tập lí thuyết: Câu 1: Phát biểu quy tắc nhân hai số nguyên khác dấu. áp dụng: Tính 27. (-2) Câu 2: Hãy lập bảng cách nhận biết dấu của tích? Câu 3: Phép nhân có những tính chất cơ bản nào? II. Bài tập Bài 1: 1/ Điền dấu ( >,<,=) thích hợp vào ô trống: a/ (- 15) . (-2) c 0 b/ (- 3) . 7 c 0 c/ (- 18) . (- 7) c 7.18 d/ (-5) . (- 1) c 8 . (-2) 2/ Điền vào ô trống a - 4 3 0 9 b - 7 40 - 12 - 11 ab 32 - 40 - 36 44 3/ Điền số thích hợp vào ô trống: x 0 - 1 2 6 - 7 x3 - 8 64 - 125 Hướng dẫn 1/. a/ b/ c/ d/ a - 4 3 - 1 0 9 - 4 b - 8 - 7 40 - 12 - 4 - 11 ab 32 - 21 - 40 0 - 36 44 Bài 2: . 1/Viết mỗi số sau thành tích của hai số nguyên khác dấu: a/ -13 b/ - 15 c/ - 27 Hướng dẫn: a/ - 13 = 13 .(-1) = (-13) . 1 b/ - 15 = 3. (- 5) = (-3) . 5 c/ -27 = 9. (-3) = (-3) .9 Bài 3: 1/Tìm x biết: a/ 11x = 55 b/ 12x = 144 c/ -3x = -12 d/ 0x = 4 e/ 2x = 6 2/ Tìm x biết: a/ (x+5) . (x – 4) = 0 b/ (x – 1) . (x - 3) = 0 c/ (3 – x) . ( x – 3) = 0 d/ x(x + 1) = 0 Hướng dẫn 1.a/ x = 5 b/ x = 12 c/ x = 4 d/ không có giá trị nào của x để 0x = 4 e/ x= 3 2. Ta có a.b = 0 a = 0 hoặc b = 0 a/ (x+5) . (x – 4) = 0 (x+5) = 0 hoặc (x – 4) = 0 x = 5 hoặc x = 4 b/ (x – 1) . (x - 3) = 0 (x – 1) = 0 hoặc (x - 3) = 0 x = 1 hoặc x = 3 c/ (3 – x) . ( x – 3) = 0 (3 – x) = 0 hoặc ( x – 3) = 0 x = 3 ( trường hợp này ta nói phương trình có nghiệm kép là x = 3 d/ x(x + 1) = 0 x = 0 hoặc x = - 1 Bài 4: Tính a/ (-37 – 17). (-9) + 35. (-9 – 11) b/ (-25)(75 – 45) – 75(45 – 25) Bài 5: Tính giá trị của biểu thức: a/ A = 5a3b4 với a = - 1, b = 1 b/ B = 9a5b2 với a = -1, b = 2 Bài 6: . Tính giá trị của biểu thức: a/ ax + ay + bx + by biết a + b = -2, x + y = 17 b/ ax - ay + bx - by biết a + b = -7, x - y = -1 Bài 7: Tính một cách hợp lí giá trị của biểu thức a/ A = (-8).25.(-2). 4. (-5).125 b/ B = 19.25 + 9.95 + 19.30 Hướng dẫn: a/ A = -1000000 b/ Cần chú ý 95 = 5.19 áp dụng tính chất giao hoán, kết hợp để tính, ta được B = 1900 Buổi 11: 19/1/2013 BộI Và ƯớC CủA MộT Số NGUYÊN A. MụC TIÊU - Ôn tập lại khái niệm về bội và ước của một số nguyên và tính chất của nó. - Biết tìm bội và ước của một số nguyên. - Thực hiện một số bài tập tổng hợp. B. KIếN THứC I. Câu hỏi ôn tập lí thuyết: Câu 1: Nhắc lại khái niệm bội và ước của một số nguyên. Câu 2: Nêu tính chất bội và ước của một số nguyên. Câu 3: Em có nhận xét gì xề bội và ước của các số 0, 1, -1? II. Bài tập Dạng 1: Bài 1: Tìm tất cả các ước của 5, 9, 8, -13, 1, -8 Hướng dẫn Ư(5) = -5, -1, 1, 5 Ư(9) = -9, -3, -1, 1, 3, 9 Ư(8) = -8, -4, -2, -1, 1, 2, 4, 8 Ư(13) = -13, -1, 1, 13 Ư(1) = -1, 1 Ư(-8) = -8, -4, -2, -1, 1, 2, 4, 8 262. Viết biểu thức xác định: a/ Các bội của 5, 7, 11 b/ Tất cả các số chẵn c/ Tất cả các số lẻ Hướng dẫn a/ Bội của 5 là 5k, kZ Bội của 7 là 7m, mZ Bội của 11 là 11n, nZ b/ 2k, kZ c/ 2k 1, kZ Bài 2: Tìm các số nguyên a biết: a/ a + 2 là ước của 7 b/ 2a là ước của -10. c/ 2a + 1 là ước của 12 Hướng dẫn a/ Các ước của 7 là 1, 7, -1, -7 do đó: +) a + 2 = 1 a = -1 +) a + 2 = 7 a = 5 +) a + 2 = -1 a = -3 +) a + 2 = -7 a = -9 b/ Các ước của 10 là 1, 2, 5, 10, mà 2a là số chẵn do đó: 2a = 2, 2a = 10 2a = 2 a = 1 2a = -2 a = -1 2a = 10 a = 5 2a = -10 a = -5 c/ Các ước của 12 là 1, 2, 3,6, 12, mà 2a + 1 là số lẻ do đó: 2a +1 = 1, 2a + 1 = 3 Suy ra a = 0, -1, 1, -2 Bài 3: Chứng minh rằng nếu a Z thì: a/ M = a(a + 2) – a(a – 5) – 7 là bội của 7. b/ N = (a – 2)(a + 3) – (a – 3)(a + 2) là số chẵn. Hướng dẫn a/ M= a(a + 2) – a(a - 5) – 7 = a2 + 2a – a2 + 5a – 7 = 7a – 7 = 7 (a – 1) là bội của 7. b/ N= (a – 2) (a + 3) – (a – 3) (a + 2) = (a2 + 3a – 2a – 6) – (a2 + 2a – 3a – 6) = a2 + a – 6 – a2 + a + 6 = 2a là số chẵn với aZ. Bài 4: Cho các số nguyên a = 12 và b = -18 a/ Tìm các ước của a, các ước của b. b/ Tìm các số nguyên vừa là ước của a vừa là ước của b/ Hướng dẫn a/ Trước hết ta tìm các ước số của a là số tự nhiên Ta có: 12 = 22. 3 Các ước tự nhiên của 12 là: Ư(12) = {1, 2, 22, 3, 2.3, 22. 3} = {1, 2, 4, 3, 6, 12} Từ đó tìm được các ước của 12 là: 1, 2, 3, 6, 12 Tương tự ta tìm các ước của -18. Ta có |-18| = 18 = 2. 33 Các ước tự nhiên của |-18| là 1, 2, 3, 9, 6, 18 Từ đó tìm được các ước của 18 là: 1, 2, 3, 6, 9 18 b/ Các ước số chung của 12 và 18 là: 1, 2, 3, 6 Ghi chú: Số c vừa là ước của a, vừa là ước của b gọi là ước chung của a và b. Dạng 2: Bài tập ôn tập chung Bài 1: Trong những câu sau câu nào đúng, câu nào sai: a/ Tổng hai số nguyên âm là 1 số nguyên âm. b/ Hiệu hai số nguyên âm là một số nguyên âm. c/ Tích hai số nguyên là 1 số nguyên dương d/ Tích của hai số nguyên âm là 1 số nguyên dương. Hướng dẫn a/ Đúng b/ Sai, chẳng hạn (-4) – (-7) = (-4) + 7 = 3 c/ Sai, chẳng hạn (-4).3 = -12 d/ Đúng Bài 2: Tính các tổng sau: a/ [25 + (-15)] + (-29); b/ 512 – (-88) – 400 – 125; c/ -(310) + (-210) – 907 + 107; d/ 2004 – 1975 –2000 + 2005 Hướng dẫn a/ -19 b/ 75 c/ -700 d/ 34 274. Tìm tổng các số nguyên x biết: a/ b/ Hướng dẫn a/ Từ đó ta tính được tổng này có giá trị bằng 0 b/ Tổng các số nguyên x bằng Bài 3. Tính giá strị của biểu thức A = -1500 - {53. 23 – 11.[72 – 5.23 + 8(112 – 121)]}. (-2) Hướng dẫn A = 302 Buổi 12,13: 24/1/2013 ôn tập PHÂN Số - PHÂN Số BằNG NHAU A> MụC TIÊU - Học ôn tập khái niệm phân số, định nghĩa hai phân số bằnh nhau. - Luyện tập viết phân số theo điều kiện cho trước, tìm hai phân số bằng nhau - Rèn luyện kỹ năng tính toán. KIếN THứC Bài 1: Định nghĩa hai phân số bằng nhau. Cho VD? Bài 2: Dùng hai trong ba số sau 2, 3, 5 để viết thành phân số (tử số và mấu số khác nhau) Hướng dẫn Có các phân số: Bài 3: 1/ Số nguyên a phải có điều kiện gì để ta có phân số? a/ b/ 2/ Số nguyên a phải có điều kiện gì để các phân số sau là số nguyên: a/ b/ 3/ Tìm số nguyên x để các phân số sau là số nguyên: a/ b/ Hướng dẫn 1/ a/ b/ 2/ a/ Z khi và chỉ khi a + 1 = 3k (k Z). Vậy a = 3k – 1 (k Z) b/ Z khi và chỉ khi a - 2 = 5k (k Z). Vậy a = 5k +2 (k Z) 3/ Z khi và chỉ khi x – 1 là ước của 13. Các ước của 13 là 1; -1; 13; -13 x - 1 -1 1 -13 13 x 0 2 -12 14 Suy ra: b/ = Z khi và chỉ khi x – 2 là ước của 5. x - 2 -1 1 -5 5 x 1 3 -3 7 Bài 4: Tìm x biết: a/ b/ c/ d/ e/ f/ Hướng dẫn a/ b/ c/ d/ e/ f/ Bài 5: a/ Chứng minh rằng thì 2/ Tìm x và y biết và x + y = 16 Hướng dẫn a/ Ta có Suy ra: b/ Ta có: Suy ra x = 10, y = 6 Bài 6: Cho , chứng minh rằng Hướng dẫn áp dụng kết quả chứng minh trên ta có =================== Buổi 14:23/2/2013 TíNH CHấT CƠ BảN CủA PHÂN Số - RúT GọN PHÂN Số . A> MụC TIÊU - HS được ôn tập về tính chất cơ bản của phân số - Luyện tập kỹ năng vận dụng kiến thức cơ bản của phân số để thực hiện các bài tập rút gọn, chứng minh. Biết tìm phân số tối giản. - Rèn luyện kỹ năng tính toán hợp lí. KIếN THứC I. Câu hỏi ôn tập lý thuyết Câu 1: Hãy nêu tính chất cơ bản của phân số. Câu 2: Nêu cách rút gọn phân số. áp dụng rút gọn phân số Câu 3: Thế nào là phân số tối giản? Cho VD 2 phân số tối giản, 2 phân số chưa tối giản. II. Bài tập Bài 1: 1/ Chứng tỏ rằng các phân số sau đây bằng nhau: a/ ; và b/ ; và 2/ Tìm phân số bằng phân số và biết rằng hiệu của mẫu và tử của nó bằng 6. Hướng dẫn 1/ a/ Ta có: = = b/ Tương tự 2/ Gọi phân số cần tìm có dạng (x-6), theo đề bài thì = Từ đó suy ra x = 33, phân số cần tìm là Bài 2: Điền số thích hợp vào ô vuông a/ b/ Hướng dẫn a/ b/ Bài 3. Giải thích vì sao các phân số sau bằng nhau: a/ ; b/ Hướng dẫn a/ ; b/ HS giải tương tự Bài 4. Rút gọn các phân số sau: Hướng dẫn Rút gọn các phân số sau: a/ b/ c/ Hướng dẫn a/ b/ c/ Bài 5. Rút gọn a/ b/ c/ d/ Hướng dẫn a/ c/ Bài 6. Tổng của tử và mẫu của phân số bằng 4812. Sau khi rút gọn phân số đó ta được phân số . Hãy tìm phân số chưa rút gọn. Hướng dẫn Tổng số phần bằng nhau là 12 Tổng của tử và mẫu bằng 4812 Do đó: tử số bằng 4811:12.5 = 2005 Mẫu số bằng 4812:12.7 = 2807. Vậy phân số cần tìm là Bài 7. Mẫu số của một phân số lớn hơn tử số 14 đơn vị. Sau khi rút gọn phân số đó ta được . Hãy tìm phân số ban đầu. Hiệu số phần của mẫu và tử là 1000 – 993 = 7 Do đó tử số là (14:7).993 = 1986 Mẫu số là (14:7).1000 = 2000 Vạy phân số ban đầu là Bài 8: a/ Với a là số nguyên nào thì phân số là tối giản. b/ Với b là số nguyên nào thì phân số là tối giản. c/ Chứng tỏ rằng là phân số tối giản Hướng dẫn a/ Ta có là phân số tối giản khi a là số nguyên khác 2 và 37 b/ là phân số tối giản khi b là số nguyên khác 3 và 5 c/ Ta có ƯCLN(3n + 1; 3n) = ƯCLN(3n + 1 – 3n; 3n) = ƯCLN(1; 3n) = 1 Vậy là phân số tối giản (vì tử và mẫu là hai số nguyên tố cùng nhau) Buổi 15: Ngày26/2/2013 Ôn tập QUY ĐồNG MẫU PHÂN Số - SO SáNH PHÂN Số A> MụC TIÊU - Ôn tập về các bước quy đồng mẫu hai hay nhiều phân số. - Ôn tập về so sánh hai phân số - Rèn luyện HS ý thức làm việc theo quy trình, thực hiện đúng, đầy đủ các bước quy đồng, rèn kỹ năng tính toán, rút gọn và so sánh phân số. KIếN THứC I. Câu hỏi ôn tập lý thuyết Câu 1: Phát biểu quy tắc quy đồng mẫu hai hay nhiều phân số có mẫu số dương? Câu 2: Nêu cách so sánh hai phân số cùng mẫu. AD so sánh hai phân số và Câu 3: Nêu cách so sánh hai phân số không cùng mẫu. AD so sánh: và ; và Câu 4: Thế nào là phân số âm, phân số dương? Cho VD. II. Bài toán Bài 1: a/ Quy đồng mẫu các phân số sau: b/ Rút gọn rồi quy đồng mẫu các phân số sau: Hướng dẫn a/ 38 = 2.19; 12 = 22.3 BCNN(2, 3, 38, 12) = 22. 3. 19 = 228 b/ BCNN(10, 40, 200) = 23. 52 = 200 Bài 2: Các phân số sau có bằng nhau hay không? a/ và ; b/ và c/ và d/ và Hướng dẫn - Có thể so sánh theo định nghĩa hai phân số bằng nhau hoặc quy đồng cùng mẫu rồi so sánh - Kết quả: a/ = ; b/ = c/ > d/ > Bài 3: Rút gọn rồi quy đồng mẫu các phân số: a/ và b/ và Hướng dẫn = ; = b/ ; Bài 4: Tìm tất cả các phân số có tử số là 15 lớn hơn và nhỏ hơn Hướng dẫn Gọi phân số phải tìm là (a ), theo đề bài ta có . Quy đồng tử số ta được Vậy ta được các phân số cần tìm là ; ; ; ; ; ; ; ; ; Bài 5: Tìm tất cả các phân số có mẫu số là 12 lớn hơn và nhỏ hơn Hướng dẫn Cách thực hiện tương tự ... ọc sinh thực hành trên máy tính cách tìm giá trị phân số của một số cho trước. KIếN THứC Bài tập Bài 1: 1/ Một lớp học có số HS nữ bằng số HS nam. Nếu 10 HS nam chưa vào lớp thì số HS nữ gấp 7 lần số HS nam. Tìm số HS nam và nữ của lớp đó. 2/ Trong giờ ra chơi số HS ở ngoài bằng 1/5 số HS trong lớp. Sau khi 2 học sinh vào lớp thì số số HS ở ngoài bừng 1/7 số HS ở trong lớp. Hỏi lớp có bao nhiêu HS? Hướng dẫn: 1/ Số HS nam bằng số HS nữ, nên số HS nam bằng số HS cả lớp. Khi 10 HS nam chưa vào lớp thì số HS nam bằng số HS nữ tức bằng số HS cả lớp. Vậy 10 HS biểu thị - = (HS cả lớp) Nên số HS cả lớp là: 10 : = 40 (HS) Số HS nam là : 40. = 15 (HS) Số HS nữ là : 40. = 25 (HS) 2/ Lúc đầu số HS ra ngoài bằng số HS trong lớp, tức số HS ra ngoài bằng số HS trong lớp. Sau khi 2 em vào lớp thì số HS ở ngoài bằng số HS của lớp. Vậy 2 HS biểu thị - = (số HS của lớp) Vậy số HS của lớp là: 2 : = 48 (HS) Bài 2: 1/ Ba tấm vải có tất cả 542m. Nết cắt tấm thứ nhất , tấm thứ hai , tấm thứ ba bằng chiều dài của nó thì chiều dài còn lại của ba tấm bằng nhau. Hỏi mỗi tấm vải bao nhiêu mét? Hướng dẫn: Ngày thứ hai hợp tác xã gặt được: (diện tích lúa) Diện tích còn lại sau ngày thứ hai: (diện tích lúa) diện tích lúa bằng 30,6 a. Vậy trà lúa sớm hợp tác xã đã gặt là: 30,6 : = 91,8 (a) Bài 3: Một người có xoài đem bán. Sau khi án được 2/5 số xoài và 1 trái thì còn lại 50 trái xoài. Hỏi lúc đầu người bán có bao nhiêu trái xoài Hướng dẫn Cách 1: Số xoài lức đầu chia 5 phần thì đã bắn 2 phần và 1 trái. Như vậy số xoài còn lại là 3 phần bớt 1 trsi tức là: 3 phần bằng 51 trái. Số xoài đã có là trái Cách 2: Gọi số xoài đem bán có a trái. Số xoài đã bán là Số xoài còn lại bằng: (trái) ================== Buổi 22: TìM Tỉ Số CủA HAI Số A> MụC TIÊU HS hiểu được ý nghĩa và biết cách tìm tỉ số của hai số, tỉ số phần trăm, tỉ lệ xích. Có kĩ năng tìm tỉ số, tỉ số phần trăn và tỉ lệ xích. Có ý thức áp dụng các kiến thức và kĩ năng nói teen vào việc giải một số bài toán thực tiễn. KIếN THứC Bài tập Bài 1: 1/ Một ô tô đi từ A về phía B, một xe máy đi từ B về phía A. Hai xe khởi hành cùng một lúc cho đến khi gặp nhau thì quãng đường ôtô đi được lớn hơn quãng đường của xe máy đi là 50km. Biết 30% quãng đường ô tô đi được bằng 45% quãng đường xe máy đi được. Hỏi quãng đường mỗi xe đi được bằng mấy phần trăm quãng đường AB. 2/ Một ô tô khách chạy với tốc độ 45 km/h từ Hà Nội về Thái Sơn. Sau một thời gian một ôtô du lịch cũng xuất phát từ Hà Nội đuổi theo ô tô khách với vận tốc 60 km/h. Dự định chúng gặp nhau tại thị xã Thái Bình cách Thái Sơn 10 km. Hỏi quãng đường Hà Nội – Thái Sơn? Hướng dẫn: 1/ 30% = ; 45% = quãng đường ôtô đi được bằng quãng đường xe máy đi được. Suy ra, quãng đường ôtô đi được bằng quãng đường xe máy đi được. Quãng đường ôtô đi được: 50: (30 – 20) x 30 = 150 (km) Quãng đường xe máy đi được: 50: (30 – 20) x 20 = 100 (km) 2/ Quãng đường đi từ N đến Thái Bình dài là: 40 – 10 = 30 (km) Thời gian ôtô du lịch đi quãng đường N đến Thái Bình là: 30 : 60 = (h) Trong thời gian đó ôtô khách chạy quãng đường NC là: 40.= 20 (km) Tỉ số vận tốc của xe khách trước và sau khi thay đổi là: Tỉ số này chính lầ tỉ số quãng đường M đến Thái Bình và M đến C nên: MTB – MC = MC – MC = MC Vậy quãng đường MC là: 10 : = 80 (km) Vì MTS = 1 - = (HTS) Vậy khoảng cách Hà Nội đến Thái Sơn (HNTS) dài là: 100 : = 100. = 130 (km) Bài 2: . 1/ Nhà em có 60 kg gạo đựng trong hai thùng. Nếu lấy 25% số gạo của thùng thứ nhất chuyển sang thùng thứ hai thì số gạo của hai thùng bằng nhau. Hỏi số gạo của mỗi thùng là bao nhiêu kg? Hướng dẫn: Nếu lấy số gạo thùng thứ nhất làm đơn vị thì số gạo của thùng thứ hai bằng (đơn vị) (do 25% = ) và số gạo của thùng thứ nhất bằng số gạo của thùng thứ hai + số gạo của thùng thứ nhất. Vậy số gạo của hai thùng là: (đơn vị) đơn vị bằng 60 kg. Vậy số gạo của thùng thứ nhất là: (kg) Số gạo của thùng thứ hai là: 60 – 40 = 20 (kg) Bài 3: Một đội máy cày ngày thứ nhất cày được 50% ánh đồng và thêm 3 ha nữa. Ngày thứ hai cày được 25% phần còn lại của cánh đồng và 9 ha cuối cùng. Hỏi diện tích cánh đồng đó là bao nhiêu ha? 2/ Nước biển chưa 6% muối (về khối lượng). Hỏi phải thêm bao nhiêu kg nước thường vào 50 kg nước biển để cho hỗn hợp có 3% muối? Hướng dẫn: 1/ Ngày thứ hai cày được: (ha) Diện tích cánh đồng đó là: (ha) 2/ Lượng muối chứa trong 50kg nước biển: (kg) Lượng nước thường cần phải pha vào 50kg nước biển để được hỗn hợp cho 3% muối: 100 – 50 = 50 (kg) Bài4: Trên một bản đồ có tỉ lệ xích là 1: 500000. Hãy tìm: a/ Khoảng cách trên thực tế của hai điểm trên bản đồ cách nhau 125 milimet. b/ Khoảng cách trên bản đồ của hai thành phố cách nhau 350 km (trên thực tế). Hướng dẫn a/ Khảng cách trên thực tế của hai điểm là: 125.500000 (mm) = 125500 (m) = 62.5 (km). b/ Khảng cách giữa hai thành phố trên bản đồ là: 350 km: 500000 = 350000:500000 (m) = 0.7 m ============== Chuyênn đề : SO SáNH PHÂN Số : Để so sánh 2 phân số , tùy theo một số trường hợp cụ thể của đặc điểm các phân số , ta có thể sử dụng nhiều cách tính nhanh và hợp lí .Tính chất bắc cầu của thứ tự thường được sử dụng (), trong đó phát hiện ra một số trung gian để làm cầu nối là rất quan trọng.Sau đây tôi xin giới thiệu một số phương pháp so sánh phân số PHầN I: CáC PHƯƠNG PHáP SO SáNH . Quy đồng mẫu dương rồi so sánh các tử :tử nào lớn hơn thì phân số đó lớn hơn I/CáCH 1: Ví dụ : So sánh ? Ta viết : ; Quy đồng tử dương rồi so sánh các mẫu có cùng dấu “+” hay cùng dấu “-“: mẫu nào nhỏ hơn thì phân số đó lớn hơn . Chú ý :Phải viết phân số dưới mẫu dương . II/CáCH 2: Ví dụ 1 : Ví dụ 2: So sánh ? Ta có : ; Ví dụ 3: So sánh ? Ta có : ; Chú ý : Khi quy đồng tử các phân số thì phải viết các tử dương . (Tích chéo với các mẫu b và d đều là dương ) +Nếu a.d>b.c thì + Nếu a.d<b.c thì ; + Nếu a.d=b.c thì III/CáCH 3: Ví dụ 1: Ví dụ 2: Ví dụ 3:So sánh Ta viết ; Vì tích chéo –3.5 > -4.4 nên Chú ý : Phải viết các mẫu của các phân số là các mẫu dương vì chẳng hạn do 3.5 < -4.(-4) là sai Dùng số hoặc phân số làm trung gian . IV/CáCH 4: Dùng số 1 làm trung gian: Nếu Nếu mà M > N thì M,N là phần thừa so với 1 của 2 phân số đã cho . Phân số nào có phần thừa lớn hơn thì phân số đó lớn hơn. Nếu mà M > N thì M,N là phần thiếu hay phần bù đến đơn vị của 2 phân số đó. Phân số nào có phần bù lớn hơn thì phân số đó nhỏ hơn. Bài tập áp dụng : Bài tập 1: So sánh Ta có : ; Bài tập 2: So sánh Ta có : ; Bài tập 3 : So sánh Ta có Dùng 1 phân số làm trung gian:(Phân số này có tử là tử của phân số thứ nhất , có mẫu là mẫu của phân số thứ hai) Ví dụ : Để so sánh ta xét phân số trung gian . Vì *Nhận xét : Trong hai phân số , phân số nào vừa có tử lớn hơn , vừa có mẫu nhỏ hơn thì phân số đó lớn hơn (điều kiện các tử và mẫu đều dương ). *Tính bắc cầu : Bài tập áp dụng : Bài tập 1: So sánh -Xét phân số trung gian là , ta thấy -Hoặc xét số trung gian là , ta thấy Bài tập 2: So sánh Dùng phân số trung gian là Ta có : Bài tập 3: (Tự giải) So sánh các phân số sau: e) f) g) h) (Hướng dẫn : Từ câu ac :Xét phân số trung gian. Từ câu dh :Xét phần bù đến đơn vị ) Dùng phân số xấp xỉ làm phân số trung gian. Ví dụ : So sánh Ta thấy cả hai phân số đã cho đều xấp xỉ với phân số trung gian là. Ta có : Bài tập áp dụng : Dùng phân số xấp xỉ làm phân số trung gian để so sánh : Dùng tính chất sau với m0 : V/ CáCH 5: Bài tập 1: So sánh Ta có : (vì tử < mẫu) Vậy A < B . Bài tập 2: So sánh Ta có : Cộng theo vế ta có kết quả M > N. Bài tập 3:So sánh ? Giải: (áp dụng ) Đổi phân số lớn hơn đơn vị ra hỗn số để so sánh : +Hỗn số nào có phần nguyên lớn hơn thì hỗn số đó lớn hơn. +Nếu phần nguyên bằng nhau thì xét so sánh các phân số kèm theo. VI/CáCH 6: Bài tập 1:Sắp xếp các phân số theo thứ tự tăng dần. Giải: đổi ra hỗn số : Ta thấy: nên . Bài tập 2: So sánh Giải: mà Bài tập 3: Sắp xếp các phân số theo thứ tự tăng dần. Giải: Xét các phân số nghịch đảo: , đổi ra hỗn số là : Ta thấy: Bài tập 4: So sánh các phân số : ? Hướng dẫn giải: Rút gọn A=1 , đổi B;C ra hỗn số A<B<C. Bài tập 5: So sánh Hướng dẫn giải:-Rút gọn ( Chú ý: 690=138.5&548=137.4 ) Bài tập 6: (Tự giải) Sắp xếp các phân số theo thứ tự giảm dần. PHầN II: CáC BàI TậP TổNG HợP . Bài tập 1: So sánh các phân số sau bằng cách hợp lý: (Gợi ý: a) Quy đồng tử c) Xét phần bù , chú ý : d)Chú ý: Xét phần bù đến đơn vị e)Chú ý: phần bù đến đơn vị là:) Bài tập 2: Không thực hiện phép tính ở mẫu , hãy dùng tính chất của phân số để so sánh các phân số sau: Hướng dẫn giải:Sử dụng tính chất a(b + c)= ab + ac +Viết 244.395=(243+1).395=243.395+395 +Viết 423134.846267=(423133+1).846267=.. . +Kết quả A=B=1 (Gợi ý: làm như câu a ở trên ,kết quả M=N=1,P>1) Bài tập 3: So sánh Gợi ý: 7000=7.103 ,rút gọn Bài tập 4: So sánh Gợi ý: Chỉ tính Từ đó kết luận dễ dàng : A < B Bài tập 5:So sánh ? Gợi ý: 1919=19.101 & 191919=19.10101 ; Kết quả M>N Mở rộng : 123123123=123.1001001 ;... Bài tập 6: So sánh Gợi ý: +Cách 1: Sử dụng ; chú ý : +Cách 2: Rút gọn phân số sau cho 101. Bài tập 7: Cho a,m,n N* .Hãy so sánh : Giải: Muốn so sánh A & B ,ta so sánh & bằng cách xét các trường hợp sau: Với a=1 thì am = an A=B Với a0: Nếu m= n thì am = an A=B Nếu m< n thì am < an A < B Nếu m > n thì am > an A >B Bài tập 8: So sánh P và Q, biết rằng: ? Vậy P = Q Bài tập 9: So sánh Giải: Rút gọn Vậy M = N Bài tập 10: Sắp xếp các phân số theo thứ tự tăng dần ? Gợi ý: Quy đồng tử rồi so sánh . Bài tập 11: Tìm các số nguyên x,y biết: ? Gợi ý : Quy đồng mẫu , ta được 2 < 3x < 4y < 9 Do đó x=y=1 hay x=1 ; y=2 hay x=y=2. Bài tập 12: So sánh Giải: Ap dụng công thức: Chọn làm phân số trung gian ,so sánh > C > D. Bài tập 13: Cho a)Chứng minh: M < N b) Tìm tích M.N c) Chứng minh: Giải: Nhận xét M và N đều có 45 thừa số a)Và nên M < N b) Tích M.N c)Vì M.N mà M < N nên ta suy ra được : M.M << tức là M.M < . M < Bài tập 14: Cho tổng : .Chứng minh: Giải: Tổng S có 30 số hạng , cứ nhóm 10 số hạng làm thành một nhóm .Giữ nguyên tử , nếu thay mẫu bằng một mẫu khác lớn hơn thì giá trị của phân số sẽ giảm đi. Ngược lại , nếu thay mẫu bằng một mẫu khác nhỏ hơn thì giá trị của phân số sẽ tăng lên. Ta có : hay từc là: Vậy (1) Mặt khác: tức là : Vậy (2). Từ (1) và (2) suy ra :đpcm.
Tài liệu đính kèm: