I. MỤC TIÊU :
1. Kiến thức:
+ Củng cố các khái niệm: “ hàm số”, “biến số”, “ đồ thị của hàm số”, hàm số
đồng biến trên R, hàm số nghịch biến trên R.
2. Kĩ năng:
+ Tiếp tục rèn luyện kỹ năng tính giá trị của hàm số, kỹ năng vẽ đồ thị hàm
số, kỹ năng “đọc” đồ thị.
+ Có kỹ năng nhận dạng “ hàm số”, “biến số”, “ đồ thị của hàm số”, hàm số
đồng biến trên R, hàm số nghịch biến trên R.
3. Thái độ:
- Tích cực trong mọi HĐ.
II. ĐỒ DÙNG DẠY HỌC:
- GV:+ Bảng phụ ghi kết quả bài tập 2, câu hỏi, hình vẽ
+ Bảng phụ vẽ sẵn hệ trục toạ độ , có lưới ô vuông
+ Thước thẳng, compa, phấn màu, máy tính bỏ túi
- HS :+ Ôn tập các kiến thức có liên quan “ hàm số”, “đồ thị của hàm số”,
hàm số đồng biến, hàm số nghịch biến trên R.
+ Thước kẻ, compa, máy tính bỏ túi ;
III. PHƯƠNG PHÁP:
Thuyết trình,hỏi đáp,gợi mở, HĐ nhóm.
IV.TỔ CHỨC GIỜ HỌC:
1. Ổn định tổ chức lớp.(1 phút) 9A: 9B:
2.Khởi động(mở bài):(6 phút)
Kiểm tra bài cũ :
? Khái niệm hàm số ?
? Thế nào là h/s đồng biến ? Nghịch biến ?
Chữa BT số 2 (SGK) ? - Hs nêu khái niện hàm số tr42, 44 SGK
Ngày soạn: 31/10/2012 Ngày giảng: 03/11/2012 Chương II. Hàm số bậc nhất Tiết 19 : nhắc lại và bổ sung các khái niệm về hàm số I. Mục tiêu : 1. Kiến thức: - Hiểu Các khái niệm về ''hàm số'';''biến số'';hàm số có thể được cho bằng bảng,bằng công thức + Khi y là hàm số của x,thì có thể viết y = f(x); y = g(x)....Giá trị của hàm số y = f(x) tại x0, x1 được kí hiệu là f(xo)(fx1)...... + Bước đầu hiểu được các khái niệm hàm số đồng biến trên R, nghịch biến trên R 2. Kĩ năng: + HS biết cách tính và tính thành thạo các giá trị của hàm số khi cho biến số; biết biểu diễn các cặp số(x; y) trên mặt phẳng toạ độ; biết vẽ thàng thạo đồ thị hàm số y = ax. 3. Thái độ: - Tích cực trong mọi HĐ. II. Đồ dùng dạy học: GV: Bảng phụ HS : Thước thẳng. III. Phương pháp: Thuyết trình,hỏi đáp,gợi mở, HĐ nhóm. IV.Tổ chức giờ học: 1. ổn định tổ chức lớp.(1 phút) 9A: 9B: 2.Khởi động(mở bài):(2 phút) Kiểm tra bài cũ :(Không) Đặt vấn đề và giới thiệu nội dung chương II (3 phút) GV: Lớp 7 chúng ta đã được làm quen với khái niệm hàm số, một số ví dụ hàm số, khái niệm mặt phẳng toạ độ; đồ thị hàm số y = ax. ở lớp 9 ngoài ôn tập lại các kiến thức trên ta còn bổ sung thêm một số khái niệm: hàm số đồng biến,hàm số nghịch biến; đường thẳng song song và xét kĩ một hàm số cụ thể y = ax + b (a ạ 0) Tiết học này ta sẽ nhắc lại và bổ sung các khái niệm hàm số. HS nghe GV trình bày ,mở phần mục lục ( SGK - 129 ) để theo dõi 3.Các hoạt động dạy học. Hoạt động 1 : Khái niệm hàm số (12’) * Mục tiêu: Nhắc lại khái niệm hàm số,giá trị của hàm số. * Đồ dùng: Bảng phụ. * Cách tiến hành: HĐ cá nhân. Hoạt động của GV Hoạt động của HS Ghi bảng ? Khi nào đại lượng y được gọi là hàm số của đại lượng thay đổi x? ? Hàm số có thể biểu diễn bằng những cách nào - GV yêu cầu HS nghiên cứu ví dụ 1a);1b) (SGK- 42) - GV đưa bảng phụ viết sẵn ví dụ 1a ;1b và giới thiệu lại: - Ví dụ là: y là hàm số của x được cho bằng bảng.Em hãy giải thích vì sao y lại là hàm số của x? Ví dụ 1b cho thêm công thức, y là hàm số của x được cho bởi một trong bốn công thức.Em hãy giải thích vì sao công thức y=2x là một hàm số? - Các công thức khác tương tự - GV: Qua ví dụ trên ta thấy hàm số có thể được cho bằng bảng nhưng ngược lại không phảibảng nào cũng ghi các giá trị tương ứng của x và y cũng cho ta một hàm số của x và y Nếu hàm số được cho công thức y = f(x), ta hiểu rằng biến số x chỉ lấy những giá trị mà tại đó f(x)xác định ở ví dụ 1b, biểu thức 2x xác định với mọi giá trị của x, nên hàm số y = 2x, biến số x có thể lấy các giá trị tuỳ ý - ở hàm số y = 2x+3,biến số x có thể lấy các giá trị tuỳ ý,vì sao? - ở hàm số y = , biến số x có thể lấy các giá trị nào ? Vì sao ? - Công thức y = 2x ta có thể viết y = f(x) = 2x - Em hiểu như thế nào về kí hiệu f(0),f(1).....f(a) ? GV yêu cầu HS làm ?1. Cho hàm số y = f(x) = x + 5 Tính : f(0),f(1);f(a)? Thế nào là hàm hằng? Cho ví dụ? - HS: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x - HS: Hàm số có thể được cho bằng bảng hoặc bằng công thức - HS: Quan sát ; suy nghĩ - HS: Vì có đại lượng y phụ thuộc vào đại lượng thay đổi x , với mỗi giá trị của x ta luôn xác định được chỉ một giả trị tương ứng của y - HS trả lời như trên. -HS: Biểu thức 2x + 3 xác định với mọi giá trị của x - HS: Biến số x chỉ lấy những giá trị x 0.Vì biểu thức không xác định khi x = 0 Đáp số: Biến số x chỉ lấy những giá trị x ạ 1. HS: là giá trị của hàm số tại x = 0; 1;.... a ?1 f(0) = 5; f(a) = a + 5 f(1) = 5,5 - Khi x thay đổi mà y luôn nhận một giá trị không đổi thì hàm số y được gọi là hàm hằng - HS : Lấy VD Ví dụ: y = 2 là một hàm hằng. 1. Khái niệm hàm số. - Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x , và x được gọi là biến số - Hàm số có thể được cho bằng bảng hoặc bằng công thức - Khi x thay đổi mà y luôn nhận một giá trị không đổi thì hàm số y được gọi là hàm hằng Hoạt động 2. Đồ thị của hàm số (8’) * Mục tiêu:Nhắc lại khái niệm về đồ thị hàm số và cách vẽ đồ thị hàm số y= ax. * Đồ dùng. Thước thẳng, bảng phụ. * Cách tiến hành. HĐ cá nhân. GV yêu cầu HS làm bài ?2. Kẻ sẵn 2 hệ toạ 0xy lên bảng(bảng có sẵn lưới ô vuông) ? a) Biểu diễn các điểm sau trên mặt toạ độ: A(;6),B(; 4),C(1;2) D(2;1),E(3; ),F(4; ) b)Vẽ đồ thị của hàm số y=2x GV gọi 2 HS đồng thời lên bảng làm một câu a,b GV yêu cầu HS dưới lớp làm bài ?2 vào vở Gv yêu cầu HS cùng kiểm tra bài của 2 bạn trên bảng ? Thế nào là đồ thị hàm số y=f(x) Đồ thị hàm số y=2x là gì ? - GV : Chốt kiến thức 2HS: làm ?2 theo hướng dẫn của GV -HS1: làm phần a) HS2: làm phần b) -HS: trả lời Là đường thẳng OA trong mặt phẳng toạ độ 0xy 2. Đồ thị của hàm số a) - Tập hợp tất cả các điểm biểu diễn các cặp giá trị tương ứng(x;f(x)) trên mặt toạ độ được gọi là đồ thị của hàm số y=f(x) Hoạt động 3. Hàm số đồng biến,nghịch biến (7’) * Mục tiêu:Nhận biết được hàm số đồng biến,nghịch biến dựa vào sự thay đổi của biến x và f(x) * Đồ dùng: Bảng nhóm, but dạ. * Cách tiến hành: HĐ nhóm. GV yêu cầu hS HĐ nhóm 3’ làm GV: đưa đáp án lên bảng để HS đối chiếu Xét hàm số y=2x+1 Biểu thức 2x+1 xác định với những giá trị nào của x? Hãy nhận xét: Khi x tăng dần các giá trị tương ứng của y= 2x+1 thế nào? GV giới thiệu:Hàm số y=2x+1 đồng biễn trên tập hợp R Xét hàm số y=-2x+1 tương tự GV giới thiệu:Hàm số y=-2x+1 nghịch biến trên tập hợp R GV đưa khái niệm được in sẵn của SGK tr 44 lên bảng - GV : Chốt kiến thức HĐ nhóm 3’ làm Sau đó các nhóm báo cáo kết quả. - HS đối chiếu HS trả lời Biểu thức 2x+1 xác định với mọi xR Khi x tăng dần thì các giá trị tương ứng của y=2x+1 cũng tăng Biểu thức -2x+1 xác định với mọi x R Khi x tăng dần thì các giá trị tương ứng của y=-2x+1 giảm dần HS1:Đọc phần ''Một cách tổng quát'' ( SGK – 44 ) HS2:Đọc lại 3. Hàm số đồng biến,nghịch biến (SGK – 43,44 ) Tổng quát : ( SGK – 44 ) V.Tổng kết và hướng dẫn về nhà: (10p) - Hệ thống toàn bài : - Bài 1 ( SGK – 44 ) GV : cho HS lên bảng lần lượt tính f(x) tại các giá trị của x VD: f(-2) = HS: Cả lớp thực hiện ; nhận xét GV: Nhận xét ; chốt kiến thức - Nắm vững khái niệm hàm số,đồ thị hàm số,hàm số đồng biến,nghịch biến - BTVN :Bài tập 2;3 ( SGK - 45 ) Ngày soạn: 02/11/2012 Ngày giảng: 05/11/2012 Tiết 20: Luyện tập I. Mục tiêu : 1. Kiến thức: + Củng cố các khái niệm: “ hàm số”, “biến số”, “ đồ thị của hàm số”, hàm số đồng biến trên R, hàm số nghịch biến trên R. 2. Kĩ năng: + Tiếp tục rèn luyện kỹ năng tính giá trị của hàm số, kỹ năng vẽ đồ thị hàm số, kỹ năng “đọc” đồ thị. + Có kỹ năng nhận dạng “ hàm số”, “biến số”, “ đồ thị của hàm số”, hàm số đồng biến trên R, hàm số nghịch biến trên R. 3. Thái độ: - Tích cực trong mọi HĐ. II. Đồ dùng dạy học: - GV:+ Bảng phụ ghi kết quả bài tập 2, câu hỏi, hình vẽ + Bảng phụ vẽ sẵn hệ trục toạ độ , có lưới ô vuông + Thước thẳng, compa, phấn màu, máy tính bỏ túi - HS :+ Ôn tập các kiến thức có liên quan “ hàm số”, “đồ thị của hàm số”, hàm số đồng biến, hàm số nghịch biến trên R. + Thước kẻ, compa, máy tính bỏ túi ; III. Phương pháp: Thuyết trình,hỏi đáp,gợi mở, HĐ nhóm. IV.Tổ chức giờ học: 1. ổn định tổ chức lớp.(1 phút) 9A: 9B: 2.Khởi động(mở bài):(6 phút) Kiểm tra bài cũ : ? Khái niệm hàm số ? ? Thế nào là h/s đồng biến ? Nghịch biến ? Chữa BT số 2 (SGK) ? - Hs nêu khái niện hàm số tr42, 44 SGK x -2,5 -2 -1,5 -1 -0,5 0 0,5 y =-+3 4,25 4 3,75 3,5 3,25 3 2,75 GV đánh giá, cho điểm. 3.Các hoạt động dạy học. Hoạt động 1:Luyện tập ( 32’) * Mục tiêu:Vẽ đồ thị hàm số y=ax, xác định tính biến thiên của hàm số. rèn luyện kỹ năng tính giá trị của hàm số, kỹ năng vẽ đồ thị hàm số, kỹ năng “đọc” đồ thị. * Đồ dùng: + Bảng phụ vẽ sẵn hệ trục toạ độ , có lưới ô vuông + Thước thẳng, compa, phấn màu, máy tính bỏ túi * Cách tiến hành: HĐ cá nhân kết hợp HĐ nhóm. Hoạt động của GV Hoạt động của HS Ghi bảng -GV gọi HS2 lên bảng chữa bài tập 3 ( SGK- 45) Trên bảng đã vẽ sẵn hệ toạ độ Oxy có lưới ô vuông 0,5 dm. a) Vẽ trên cùng một mặt phẳng toạ độ đồ thị của hàm số y=2x và y=-2x b) Trong hai hàm số đã cho: Hàm số nào đồng biến? Hàm số nào nghịch biến? Vì sao? GV nhận xét, cho điểm. HS1: a) Vẽ trên cùng một mặt phẳng toạ độ đồ thị của hàm số y=2x và y=-2x -Với x=1 => y=2=> A(1;2) thuộc đồ thị hàm số y=2x. -Với x=1=> y=2=> B(1;-2) thuộc đồ thị hàm số y=-2x. b) Trong đó hai hàm số y=2x đồng biến vì khi giá trị của biến x tăng lên thì giá trị tương ứng của hàm số y=2x cũng tăng lên. Hàm số y=-2x nghịch biến vì... HS lớp nhận xét, chữa bài. I. Dạng 1. Vẽ đồ thị. Bài 3 ( SGK- 45) Đồ thị hàm số y=2x là đường thẳng OA Đồ thị hàm số y=-2x là đường thẳng OB GV đưa Bài 4 (SGK-45). có đủ hình vẽ lên bảng phụ GV cho HS hoạt động nhóm khoảng 6 phút. Sau gọi đại diện 1 nhóm lên trình bày lại các bước làm. Nếu HS chưa biết trình bày các bước làm thì GV cần hướng dẫn. Sau đó GV hướng dẫn HS dùng thước kẻ, compa vẽ lại đồ thị y=x -GV : Chốt kiến thức -Bài 5 (SGK-45) GV đưa đề bài lên bảng phụ -GV yêu cầu em trên bảng và cả lớp làm câu a). Vẽ đồ thị các hàm số y=x và y=2x trên cùng một mặt phẳng tọc độ. GV nhận xét đồ thị HS vẽ. b) GV vẽ đường thẳng song song với trục Ox theo yêu cầu của đề bài. +Xác định toạ độ điểm A,B +Hãy viết công thức tính chu vi P của ABO + Trên hệ Oxy, AB=? + Hãy tính OA,OB dựa vào số liệu ở đồ thị. Còn cách nào khác tính Diện tích của ABO không ? -GV: Sửa hoàn chỉnh ; chốt kiến thức HS hoạt động nhóm. Đại diện 1 nhóm trình bày. -Vẽ hình vuông cạnh 1 đơn vị; đỉnh O, đường chéo OB có độ dài bằng -Trên tia Ox đặt điểm C sao cho OC=OB= -Vẽ hình chữ nhật có một đỉnh là O, cạnh OC= , cạnh CD=1 => đường chéo OD = -Trên tia Oy đặt điểm E sao cho OE =OD = -Xác định điểm A( 1;) -Vẽ đường thẳng OA, đó là đồ thị hàm số y=x HS vẽ đồ thị y= x vào vở -1 HS đọc đề bài. -1HS lên bảng làm câu a). Với x=1y = 2 C(1;2) thuộc y=2x Với x=1 y=1 D(1;1) thuộc y = x HS: A(2;4) ; B(4;4) Chu vi của ABO là : AB + BO + AO Trên hệ Oxy, AB=2 OB = OA = Cách khác : -HS: Trình bày theo hướng dẫn -Cả lớp thực hiện , NX II. Dạng 2. Đọc đồ thị. Bài 4 (SGK-45). Đồ thị hàm số y=x được vẽ bằng thước và compa như hình vẽ 2. Bài 5 (SGK-45) a) Đồ thị hàm số y=2x là đường thẳng OC Đồ thị hàm số y=x là đường thẳng ... hoạt động : Hoạt động 1. Luyện tập (28’) * Mục tiêu: Vận dụng được kiến thức dể tìm hệ số của đường thẳng. * Đồ dùng: Thước thẳng. * Cách tiến hành: HĐ cá nhân kết hợp HĐ nhóm. Bài 27(a) và bài 29 (SGK- 58,59) HS hoạt động theo nhóm. Nửa lớp làm bài 27(a) và bài 29(a) SGK. Nửa lớp làm bài 29(b,c) SGK GV kiểm tra bài của vài nhóm. nhận xét chốt Kiến thức Bài 30 (SGK- 59) ( Đề bài đưa lên màn hình) GV: Gọi chu vi của tam giác ABC là P và diện tích của tam giác ABC là S. Chu vi tam giác ABC tính như thế nào? Nêu cách tính từng cạnh của tam giác. Tính P. Diện tích của tam giác ABC tính như thế nào? Tính cụ thể. -GV: Sửa bài hoàn chỉnh , nhấn mạnh kt HS hoạt động theo nhóm. Đại diện hai nhóm lên trình bày bài. HS lớp góp ý, chữa bài. HS cả lớp vẽ đồ thị, một HS lên bảng trình bày HS làm dưới sự hướng dẫn của GV. HS trả lời, chữa bài Cả lớp :Nhận xét 1.Bài 27(a) (SGK- 58) Đồ thị hàm số đi qua điểm A(2; 6) ị x = 2 ; y = 6 Ta thay x = 2 ; y = 6 vào phương trình: y=ax+3 ị 6 =a.2+3 ị 2a = 3ị a=1,5 Vậy hệ số góc của hàm số là a = 1,5 2.Bài 29 (SGK- 59) a) Đồ thị hàm số y = ax + b cắt trục hoành tại điểm có hoành độ bằng 1,5. ị x = 1,5 ; y = 0 Ta thay a = 2 ; x = 1,5 ; y = 0 vào phương trình: y = ax + b ị 0 = 2.1,5 + b ị b = - 3 Vậy hàm số đó là y = 2x - 3 b). Tương tự như trên A (2; 2) ị x = 2 ; y = 2 Ta thay a = 3 ; x = 2 ; y = 2 vào phương trình: y = ax + b ị 2 = 3.2 + b ị b = - 4 Vậy hàm số đó là y = 3x – 4 c) B(1; ) ị x = 1 ; y = + 5 Đồ thị hàm số y = ax + b song song với đường thẳng y = x ị a = ; b ạ 0 Ta thay a = ; x =1 ; y = + 5 vào phương trình y = ax + b + 5 = .1 + b ị b = 5 Vậy hàm số đó là y = x + 5 y x 2 C A -4 O 2 B y = x + 2 3. Bài 30 (SGK- 59) a)Vẽ b) A(-4;0); B(2;0); C(0;2) tgA = tgB = c) Gọi chu vi, diện tích của tam giác ABC là P, S. áp dụng định lí Pytago với tam giác vuông OCA và OBC ta tính được: Lại có BA = OA + OB = 4 + 2 = 6(cm) Vậy P=AB + AC = 6 + (cm) P 13,3 (cm) Hướng dẫn về nhà (3’) - G/v vẽ hình và HD HS làm bài 31 SGK ? Không vẽ đồ thị có thể xác định góc a ; b ; g hay không ? tga = a1 ; tgb = a2 ; tgg = a3 => a = . - Bài tập VN : Ôn tập phần tóm tắt kiến thức SGK làm bài tập 32 ; 33 ; 34 (SGK-61). - Giờ sau: ôn tập chương II. - Tiết sau ôn tập chương II. ---------------------------------------------------------------------- NS: 22/11/2011 NG: 25/11/2011 Tiết 29. ôn tập chương ii I. Mục tiêu : 1. Kiến thức: - Hệ thống hóa kiến các kiến thức cơ bản của chương về các khái niệm hàm số, biến số, đồ thị của hàm số, khái niệm hàm số bậc nhất y = ax + b, tính đồng biến nghịch biến của hàm số bậc nhất. các điều kiện hai đường thẳng cắt nhau, song song, trùng nhau, hệ số góc của đường thẳng y = ax + b (a0) 2. Kĩ năng: - Vẽ thành thạo đồ thị của hàm số bậc nhấ, xác định được tính đồng biến nghịch biến của hàm số bậc nhất. các điều kiện hai đường thẳng cắt nhau, song song, trùng nhau. 3. Thái độ: - Cẩn thận, chính xác, Tích cực trong mọi HĐ. II. Đồ dùng dạy học: GV: - Bảng phụ HS: - Bảng phụ nhóm, bút dạ, máy tính bỏ túi III. Phương pháp: Thuyết trình,hỏi đáp,gợi mở, HĐ nhóm. IV.Tổ chức giờ học: 1. ổn định tổ chức lớp.(1 phút) 9a: 9c: 2.Khởi động(mở bài):(2’ phút) Hoạt động 1 : Lí thuyết (15’) * Mục tiêu: Hệ thống hóa kiến các kiến thức cơ bản của chương về các khái niệm hàm số, biến số, đồ thị của hàm số, khái niệm hàm số bậc nhất y = ax + b, tính đồng biến nghịch biến của hàm số bậc nhất. các điều kiện hai đường thẳng cắt nhau, song song, trùng nhau, hệ số góc của đường thẳng y = ax + b (a0) * Đồ dùng dạy học. Bảng phụ, bút dạ màu. * Cách tiến hành: HĐ cá nhân. Hoạt động của GV Hoạt động của HS Ghi bảng GV cho HS trả lời các câu hỏi sau. Sau khi trả lời, GV đưa lên bảng phụ“Tóm tắt các kiến thức cần nhớ” tương ứng với câu hỏi. 1)Nêu định nghĩa về hàm số. 2)Hàm số thường được cho bởi công những cách nào? Nêu ví dụ cụ thể. 3)Đồ thị của hàm số y = f(x) là gì? 4)Thế nào là hàm số bậc nhất? Cho ví dụ. 5) Hàm số bậc nhất y = ax + b (a ạ 0) có những tính chất gì? Hàm số y = 2x y = -3x + 3 đồng biến hay nghịch biến? Vì sao? 6) Góc a tạo bởi đường thẳng y = ax + b và trục Ox được xác định như thế nào? 7) Giải thích vì sao người ta gọi a là hệ số góc của đường thẳng y = ax + b. 8) Khi nào hai đường thẳng y = ax + b (d) a ạ 0 và y = a’x + b’(d’) a’ ạ 0. a) Cắt nhau b) Song song với nhau c) Trùng nhau d) Vuông góc với nhau. HS trả lời theo nội dung “Tóm tắt các kiến thức cần nhớ” Cho VD trong từng trường hợp Ví dụ: y = 2x2 – 3 Ví dụ: y = 2x y =-3x + 3 Hàm số y = 2x có a =2>0 ị hàm số đồng biến. Hàm số y = -3x + 3 có a=-3 < 0 ị hàm số nghịch biến - Người ta gọi a là hệ số góc của đường thẳng y = ax + b (a ạ 0) vì giữa hệ số a và góc a có liên quan mật thiết. a > 0 thì a là góc nhọn. a càng lớn thì góc a càng lớn (nhưng vẫn nhỏ hơn 900) tga = a a < 0 thì a là góc tù. a càng lớn thì góc a càng lớn (nhưng vẫn nhỏ hơn 1800) tga’ = |a| = -a với a’ là góc kề bù của a. I. Lý thuyết 1) Định nghĩa về hàm số. 2) Kí hiệu 3) Đồ thị của hàm số y = f(x) 4) Hàm số bậc nhất 5)Tính chất hàm số bậc nhất 6) Góc a tạo bởi đường thẳng y = ax + b và trục Ox 7) Hệ số góc của đường thẳng y = ax + b ( a0) 8) Vị trí tương đối của 2 đường thẳng (SGK) (d) ^ (d’) Û a.a’ = -1 Hoạt động 2 : Luyện tập (20’) * Mục tiêu: Vẽ thành thạo đồ thị của hàm số bậc nhấ, xác định được tính đồng biến nghịch biến của hàm số bậc nhất. các điều kiện hai đường thẳng cắt nhau, song song, trùng nhau. * Đồ dùng dạy học. Bảng phụ, bút dạ màu. * Cách tiến hành: HĐ cá nhân kết hợp HĐ. GV: Cho HS hoạt động nhóm làm các bài tập 32, 33, 34, 35 (61-SGK) HS hoạt động nhóm +Nửa lớp làm bài 32, 33 + Nửa lớp làm bài 34, 35 GV kiểm tra bài làm của các nhóm, góp ý, hướng dẫn. Nhận xét , chốt Kiến thức của từng bài HS hoạt động theo nhóm. Đại diện 4 nhóm lên trình bày. HS: Sau khi các nhóm hoạt động khoảng 7 - 8 phút thì dừng lại. HS lớp nhận xét, chữa bài. II. Luyện tập 1. Bài 32 (61-SGK) a) Hàm số y = (m - 1)x + 3 đồng biến m - 1 > 0 m > 1 b) Hàm số y = (5 - k)x + 1 nghịch biến 5 - k < 0 Bài 33 (61-SGK) Hàm số y = 2x + (3 + m) và y = 3x + (5 - m) đều là hàm số bậc nhất, đã có a a’ (2 3) Đồ thị của chúng cắt nhau tại 1 điểm trên trục tung Bài 34 (61-SGK) Hai đường thẳng y = (a - 1)x + 2 (a 1) và y = (3 - a)x + 1 (a 3) đã có tung độ gốc b b’ (2 1) Hai đường thẳng song song với nhau Bài 35 (61-SGK) Hai đường thẳng y = kx + m - 2 (k 0) và y = (5 - k)x + 4 - m (k 5) trùng nhau IV.Tổng kết và hướng dẫn về nhà.(4’) - Ôn tập lí thuyết và các dạng bài tập của chương II. - Bài tập về nhà số 38 (SGK- 62). - Hướng dẫn Bài 38 (SGK- 62). c) Tính OA , OB rồi chứng tỏ tam giác OAB cân . Tính : . NS: 26/11/2011 NG: 29/11/2011 Tiết 30. KIểM TRA CHƯƠNG II I. Mục tiêu : 1. Kiến thức : - Nhận biết được hệ số gúc của đường thẳng -Nhận biết được hàm số bậc nhất - Nhận biết được hàm số đồng biến, nghịch biến(C3a,b) - Hiểu được khi nào hai đt cắt nhau, song song, trựng nhau. 2. Kĩ năng: - Vẽ được đồ thi hàm số. - Viết được pt đt thoả man đk cho trước - Tỡnh được chu vi, dt của tam giỏc 3. Thái độ : - Học sinh có ý thức học toán trình bày bài logic , hợp lý ; chính xác. - Nghiêm túc, tự giác khi làm bài. II. Dạng đề kiểm tra: TNKQ – TL. ( TNKQ 20% - TL 80%) III. Ma trận. Cấp độ Chủ đề Nhận biết Thụng hiểu Vận dụng Cộng Cấp độ thấp Cấp độ cao TNKQ TL TNKQ TL TN KQ TL TN KQ TL 1 Hàm số bậc nhất. -Nhận biết được hàm số bậc nhất(C2) - Nhận biết được hàm số đồng biến, nghịch biến(C3a,b) Số cõu Số điểm Tỉ lệ % 3 (1,5) 3 1,5= % 2. Đồ thị của hàm số y = ax + b (b0) - Vẽ được đồ thi hàm số(C4a) - Tỡnh được chu vi, dt của tam giỏc(C4b) 2 3 = % Số cõu Số điểm Tỉ lệ % 1 (2) 1 (1) 3. Vị trớ tương đối của hai đường thẳng - Hiểu được khi nào hai đt cắt nhau, song song, trựng nhau (C6a,b,c) - Viết được pt đt thoả man đk cho trước (C5a,b) Số cõu Số điểm Tỉ lệ % 3 (3) 2 (2) 5 5= % 4. Hệ số gúc của đường thẳng y = ax + b(b0) - Nhận biết được hệ số gúc của đường thẳng(C1) Số cõu Số điểm Tỉ lệ % 1 (0,5) 1 0,5 = % Tổng số cõu Tổng số điểm 4 (2) 3 (3) 4 (5) 11 (10) IV. Đề bài: I/ Trắc nghiệm khỏch quan. Cõu 1. Hệ số gúc của đường thẳng y = -2x + 1 là: A: 2 B: - 2 C: 1 D: 0 Cõu 2. Trong cỏc hàm số dưới đõy, hàm số bậc nhất là: A: 2x2 + 1 B: 0x - 2 C: -2x + 1 D: x3 - 2 Cõu 3. Điền dấu ‘X’ vào ô thích hợp : Câu Đúng Sai a) Hàm số y = -2x - là hàm số nghịch biến. b) Hàm số y = x + 1 là hàm số đồng biến II. Tự luận: Cõu 4. a. Vẽ trên cùng hệ trục đồ thị của hàm số và ? b. Gọi A là giao điểm đồ thị của hai hàm số và B, C lần lượt là giao điểm của mỗi đồ thị hàm số với trục hoành. Hãy chu vi và diện tích D ABC. Cõu 5. Viết phương trỡnh đường thẳng y = ax + b thoả món một trong cỏc điều kiện sau: Đi qua điểm A(1;2) và song với đường thẳng y = 5x Cắt trục tung Oy tại điểm cú tung độ bằng 3 và đi qua điểm B(2,1). Cõu 6. Cho hai đường thẳng y = ( k-2)x + k (d1) y = (2k + 3)x – k (d2) Với giỏ trị nào của k thỡ: d1//d2. d1 cắt d2. d1 cắt d2 tại một điểm trờn trục tung. V. Đáp án và thang điểm. Câu Nội dung Biểu điểm 1 B 0,5đ 2 C 0,5đ 3 4 5 6 a, Đ b, Đ a) Đồ thị của hàm số y = 2 – x là đường thẳng đi qua hai điểm A (0 ; 2) và B (2 ; 0). Đồ thị của hàm số y = 2x + 2 là đường thẳng đi qua hai điểm A (0 ; 2) và C ( -1; 0). b) * Tính chu vi D ABC: Ta có BC = OB + OC = 2 + 1 = 3 AB = AC = Chu vi của D ABC là AB + AC + BC = * Diện tích của D ABC: SABC = .OA.BC = .2.3 = 3 a, Vì đths y = ax +b song song với y = 5x nên a = 5 đi qua A(1 ; 2) nên x = 1, y = 2 Thay a = 5, x = 1, y = 2 vào hàm số y = ax + b ta có : 2 = 5.1 +b b = -3 Vậy hàm số là : y = 5x – 3 b, Vì đt hàm số y = ax = b cắt trục tung tại điểm có tung độ là 3 nên b = 3. đi qua B(2 ; 1) nên x = 2, y = 1 Thay b = 5, x = 2, y = 1 vào hàm số y = ax + b ta có : 1 = a.2 +3 a = -1 Vậy hàm số là : y = -x +3. y = ( k-2)x + k (d1) y = (2k + 3)x – k (d2) d1//d2. k = -5 d1 cắt d2. k 2 và k -3/2 và k -5 d1 cắt d2 tại một điểm trờn trục tung. k = 0 1đ 2 0,5đ 0,5đ 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 1 1 1 VI. Kiểm tra đề và ma trận. Duyệt của tổ chuyên môn - Đề phù hợp với đối tượng HS - Đề đảm bảo chuẩn KTKN. - Câu hỏi của đề phù hợp với ma trận. - Ma trận đề phù hợp với chuẩn.
Tài liệu đính kèm: