Chuyên đề bồi dưỡng học sinh giỏi lớp 6 phần số học bài 1 : Tìm chữ số tận cùng

Chuyên đề bồi dưỡng học sinh giỏi lớp 6 phần số học bài 1 : Tìm chữ số tận cùng

Tìm chữ số tận cùng của một số tự nhiên là dạng toán hay. Đa số các tài liệu về dạng toán này đều sử dụng khái niệm đồng dư, một khái niệm trừu tượng và không có trong chương trình. Vì thế có không ít học sinh, đặc biệt là các bạn lớp 6 và lớp 7 khó có thể hiểu và tiếp thu được.

Qua bài viết này, tôi xin trình bày với các bạn một số tính chất và phương pháp giải bài toán “tìm chữ số tận cùng”, chỉ sử dụng kiến thức THCS.

 

doc 17 trang Người đăng ducthinh Lượt xem 2906Lượt tải 5 Download
Bạn đang xem tài liệu "Chuyên đề bồi dưỡng học sinh giỏi lớp 6 phần số học bài 1 : Tìm chữ số tận cùng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Chuyªn ®Ò båi d­ìng HSG líp 6 phÇn sè häc
Bµi 1 : TÌM CHỮ SỐ TẬN CÙNG
Tìm chữ số tận cùng của một số tự nhiên là dạng toán hay. Đa số các tài liệu về dạng toán này đều sử dụng khái niệm đồng dư, một khái niệm trừu tượng và không có trong chương trình. Vì thế có không ít học sinh, đặc biệt là các bạn lớp 6 và lớp 7 khó có thể hiểu và tiếp thu được. 
Qua bài viết này, tôi xin trình bày với các bạn một số tính chất và phương pháp giải bài toán “tìm chữ số tận cùng”, chỉ sử dụng kiến thức THCS. 
Chúng ta xuất phát từ tính chất sau : 
Tính chất 1 : 
a) Các số có chữ số tận cùng là 0, 1, 5, 6 khi nâng lên lũy thừa bậc bất kì thì chữ số tận cùng vẫn không thay đổi. 
b) Các số có chữ số tận cùng là 4, 9 khi nâng lên lũy thừa bậc lẻ thì chữ số tận cùng vẫn không thay đổi. 
c) Các số có chữ số tận cùng là 3, 7, 9 khi nâng lên lũy thừa bậc 4n (n thuộc N) thì chữ số tận cùng là 1. 
d) Các số có chữ số tận cùng là 2, 4, 8 khi nâng lên lũy thừa bậc 4n (n thuộc N) thì chữ số tận cùng là 6. 
Việc chứng minh tính chất trên không khó, xin dành cho bạn đọc. Như vậy, muốn tìm chữ số tận cùng của số tự nhiên x = am, trước hết ta xác định chữ số tận cùng của a. 
- Nếu chữ số tận cùng của a là 0, 1, 5, 6 thì x cũng có chữ số tận cùng là 0, 1, 5, 6. 
- Nếu chữ số tận cùng của a là 3, 7, 9, vì am = a4n + r = a4n.ar với r = 0, 1, 2, 3 nên từ tính chất 1c => chữ số tận cùng của x chính là chữ số tận cùng của ar. 
- Nếu chữ số tận cùng của a là 2, 4, 8, cũng như trường hợp trên, từ tính chất 1d => chữ số tận cùng của x chính là chữ số tận cùng của 6.ar. 
Bài toán 1 : Tìm chữ số tận cùng của các số : 
a) 799   b) 141414   c) 4567
Lời giải : 
a) Trước hết, ta tìm số dư của phép chia 99 cho 4 : 
99 - 1 = (9 - 1)(98 + 97 +  + 9 + 1) chia hết cho 4 
=> 99 = 4k + 1 (k thuộc N) => 799 = 74k + 1 = 74k.7 
Do 74k có chữ số tận cùng là 1 (theo tính chất 1c) => 799 có chữ số tận cùng là 7.
b) Dễ thấy 1414 = 4k (k thuộc N) => theo tính chất 1d thì 141414 = 144k có chữ số tận cùng là 6. 
c) Ta có 567 - 1 chia hết cho 4 => 567 = 4k + 1 (k thuộc N) 
=> 4567 = 44k + 1 = 44k.4, theo tính chất 1d, 44k có chữ số tận cùng là 6 nên 4567 có chữ số tận cùng là 4. 
Tính chất sau được => từ tính chất 1. 
Tính chất 2 : Một số tự nhiên bất kì, khi nâng lên lũy thừa bậc 4n + 1 (n thuộc N) thì chữ số tận cùng vẫn không thay đổi. 
Chữ số tận cùng của một tổng các lũy thừa được xác định bằng cách tính tổng các chữ số tận cùng của từng lũy thừa trong tổng. 
Bài toán 2 : Tìm chữ số tận cùng của tổng S = 21 + 35 + 49 +  + 20048009. 
Lời giải : 
Nhận xét : Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n - 2) + 1, n thuộc {2, 3, , 2004}). 
Theo tính chất 2, mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng : 
(2 + 3 +  + 9) + 199.(1 + 2 +  + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 +  + 9) + 9 = 9009. 
Vậy chữ số tận cùng của tổng S là 9. 
Từ tính chất 1 tiếp tục => tính chất 3. 
Tính chất 3 : 
a) Số có chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 7 ; số có chữ số tận cùng là 7 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 3. 
b) Số có chữ số tận cùng là 2 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 8 ; số có chữ số tận cùng là 8 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 2. 
c) Các số có chữ số tận cùng là 0, 1, 4, 5, 6, 9, khi nâng lên lũy thừa bậc 4n + 3 sẽ không thay đổi chữ số tận cùng. 
Bài toán 3 : Tìm chữ số tận cùng của tổng T = 23 + 37 + 411 +  + 20048011. 
Lời giải : 
Nhận xét : Mọi lũy thừa trong T đều có số mũ khi chia cho 4 thì dư 3 (các lũy thừa đều có dạng n4(n - 2) + 3, n thuộc {2, 3, , 2004}). 
Theo tính chất 3 thì 23 có chữ số tận cùng là 8 ; 37 có chữ số tận cùng là 7 ; 411 có chữ số tận cùng là 4 ;  
Như vậy, tổng T có chữ số tận cùng bằng chữ số tận cùng của tổng : (8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 199.(1 + 8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 1 + 8 + 7 + 4 = 200(1 + 8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 8 + 7 + 4 = 9019. 
Vậy chữ số tận cùng của tổng T là 9. 
* Trong một số bài toán khác, việc tìm chữ số tận cùng dẫn đến lời giải khá độc đáo. 
Bài toán 4 : Tồn tại hay không số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000. 
Lời giải : 19952000 tận cùng bởi chữ số 5 nên chia hết cho 5. Vì vậy, ta đặt vấn đề là liệu n2 + n + 1 có chia hết cho 5 không ? 
Ta có n2 + n = n(n + 1), là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng của n2 + n chỉ có thể là 0 ; 2 ; 6 => n2 + n + 1 chỉ có thể tận cùng là 1 ; 3 ; 7 => n2 + n + 1 không chia hết cho 5. 
Vậy không tồn tại số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000. 
Sử dụng tính chất “một số chính phương chỉ có thể tận cùng bởi các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9”, ta có thể giải được bài toán sau : 
Bài toán 5 : Chứng minh rằng các tổng sau không thể là số chính phương : 
a) M = 19k + 5k + 1995k + 1996k (với k chẵn) 
b) N = 20042004k + 2003 
Sử dụng tính chất “một số nguyên tố lớn hơn 5 chỉ có thể tận cùng bởi các chữ số 1 ; 3 ; 7 ; 9”, ta tiếp tục giải quyết được bài toán : 
Bài toán 6 : Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng : p8n +3.p4n - 4 chia hết cho 5. 
* Các bạn hãy giải các bài tập sau : 
Bài 1 : Tìm số dư của các phép chia : 
a) 21 + 35 + 49 +  + 20038005 cho 5 
b) 23 + 37 + 411 +  + 20038007 cho 5 
Bài 2 : Tìm chữ số tận cùng của X, Y : 
X = 22 + 36 + 410 +  + 20048010 
Y = 28 + 312 + 416 +  + 20048016 
Bài 3 : Chứng minh rằng chữ số tận cùng của hai tổng sau giống nhau : 
U = 21 + 35 + 49 +  + 20058013 
V = 23 + 37 + 411 +  + 20058015 
Bài 4 : Chứng minh rằng không tồn tại các số tự nhiên x, y, z thỏa mãn : 
19x + 5y + 1980z = 1975430 + 2004. 
* Các bạn thử nghiên cứu các tính chất và phương pháp tìm nhiều hơn một chữ số tận cùng của một số tự nhiên, chúng ta sẽ tiếp tục trao đổi về vấn đề này. 
* Tìm hai chữ số tận cùng 
Nhận xét : Nếu x Є N và x = 100k + y, trong đó k ; y Є N thì hai chữ số tận cùng của x cũng chính là hai chữ số tận cùng của y. 
Hiển nhiên là y ≤ x. Như vậy, để đơn giản việc tìm hai chữ số tận cùng của số tự nhiên x thì thay vào đó ta đi tìm hai chữ số tận cùng của số tự nhiên y (nhỏ hơn). 
Rõ ràng số y càng nhỏ thì việc tìm các chữ số tận cùng của y càng đơn giản hơn. 
Từ nhận xét trên, ta đề xuất phương pháp tìm hai chữ số tận cùng của số tự nhiên x = am như sau : 
Trường hợp 1 : Nếu a chẵn thì x = am ∶ 2m. Gọi n là số tự nhiên sao cho an - 1 ∶ 25. 
Viết m = pn + q (p ; q Є N), trong đó q là số nhỏ nhất để aq ∶ 4 ta có :
x = am = aq(apn - 1) + aq. 
Vì an - 1 ∶ 25 => apn - 1 ∶ 25. Mặt khác, do (4, 25) = 1 nên aq(apn - 1) ∶ 100. 
Vậy hai chữ số tận cùng của am cũng chính là hai chữ số tận cùng của aq. Tiếp theo, ta tìm hai chữ số tận cùng của aq. 
Trường hợp 2 : Nếu a lẻ , gọi n là số tự nhiên sao cho an - 1 ∶ 100. 
Viết m = un + v (u ; v Є N, 0 ≤ v < n) ta có : 
x = am = av(aun - 1) + av. 
Vì an - 1 ∶ 100 => aun - 1 ∶ 100. 
Vậy hai chữ số tận cùng của am cũng chính là hai chữ số tận cùng của av. Tiếp theo, ta tìm hai chữ số tận cùng của av. 
Trong cả hai trường hợp trên, chìa khóa để giải được bài toán là chúng ta phải tìm được số tự nhiên n. Nếu n càng nhỏ thì q và v càng nhỏ nên sẽ dễ dàng tìm hai chữ số tận cùng của aq và av. 
Bài toán 7 : 
Tìm hai chữ số tận cùng của các số : 
a)   a2003     b)  799 
Lời giải : a) Do 22003 là số chẵn, theo trường hợp 1, ta tìm số tự nhiên n nhỏ nhất sao cho 2n - 1 ∶ 25. 
Ta có 210 = 1024 => 210 + 1 = 1025 ∶ 25 => 220 - 1 = (210 + 1)(210 - 1) ∶ 25 => 23(220 - 1) ∶ 100. Mặt khác :
22003 = 23(22000 - 1) + 23 = 23((220)100 - 1) + 23 = 100k + 8 (k Є N). 
Vậy hai chữ số tận cùng của 22003 là 08. 
b)   Do 799 là số lẻ, theo trường hợp 2, ta tìm số tự nhiên n bé nhất sao cho 7n - 1 ∶ 100. 
Ta có 74 = 2401 => 74 - 1 ∶ 100. 
Mặt khác : 99 - 1 ∶ 4 => 99 = 4k + 1 (k Є N) 
Vậy 799 = 74k + 1 = 7(74k - 1) + 7 = 100q + 7 (q Є N) tận cùng bởi hai chữ số 07. 
Bài toán 8 : 
Tìm số dư của phép chia 3517 cho 25. 
Lời giải : Trước hết ta tìm hai chữ số tận cùng của 3517. Do số này lẻ nên theo trường hợp 2, ta phải tìm số tự nhiên n nhỏ nhất sao cho 3n - 1 ∶ 100. 
Ta có 310 = 95 = 59049 => 310 + 1 ∶ 50 => 320 - 1 = (310 + 1) (310 - 1) ∶ 100. 
Mặt khác : 516 - 1 ∶ 4 => 5(516 - 1) ∶ 20 
=> 517 = 5(516 - 1) + 5 = 20k + 5 =>3517 = 320k + 5 = 35(320k - 1) + 35 = 35(320k - 1) + 243, có hai chữ số tận cùng là 43. 
Vậy số dư của phép chia 3517 cho 25 là 18. 
Trong trường hợp số đã cho chia hết cho 4 thì ta có thể tìm theo cách gián tiếp. 
Trước tiên, ta tìm số dư của phép chia số đó cho 25, từ đó suy ra các khả năng của hai chữ số tận cùng. Cuối cùng, dựa vào giả thiết chia hết cho 4 để chọn giá trị đúng. 
Các thí dụ trên cho thấy rằng, nếu a = 2 hoặc a = 3 thì n = 20 ; nếu a = 7 thì n = 4. 
Một câu hỏi đặt ra là : Nếu a bất kì thì n nhỏ nhất là bao nhiêu ? Ta có tính chất sau đây (bạn đọc tự chứng minh). 
Tính chất 4 : Nếu a Є N và (a, 5) = 1 thì a20 - 1 ∶ 25. 
Bài toán 9 : Tìm hai chữ số tận cùng của các tổng : 
a) S1 = 12002 + 22002 + 32002 + ... + 20042002 
b) S2 = 12003 + 22003 + 32003 + ... + 20042003 
Lời giải : 
a) Dễ thấy, nếu a chẵn thì a2 chia hết cho 4 ; nếu a lẻ thì a100 - 1 chia hết cho 4 ; nếu a chia hết cho 5 thì a2 chia hết cho 25. 
Mặt khác, từ tính chất 4 ta suy ra với mọi a Є N và (a, 5) = 1 ta có a100 - 1 ∶ 25. 
Vậy với mọi a Є N ta có a2(a100 - 1) ∶ 100. 
Do đó S1 = 12002 + 22(22000 - 1) + ... + 20042(20042000 - 1) + 22 + 32 + ... + 20042. 
Vì thế hai chữ số tận cùng của tổng S1 cũng chính là hai chữ số tận cùng của tổng 12 + 22 + 32 + ... + 20042. áp dụng công thức : 
12 + 22 + 32 + ... + n2 = n(n + 1)(2n + 1)/6 
=>12 + 22 + ... + 20042 = 2005 x 4009 x 334 = 2684707030, tận cùng là 30. 
Vậy hai chữ số tận cùng của tổng S1 là 30. 
b) Hoàn toàn tương tự như câu a, S2 = 12003 + 23(22000 - 1) + ... + 20043(20042000 - 1) + 23 + 33 + 20043. Vì thế, hai chữ số tận cùng của tổng S2 cũng chính là hai chữ số tận cùng của 13 + 23 + 33 + ... + 20043. 
áp dụng công thức : 
=> 13 + 23 + ... + 20043 = (2005 x 1002)2 = 4036121180100, tận cùng là 00. 
Vậy hai chữ số tận cùng của tổng S2 là 00. 
Trở lại bài toán 5 (TTT2 số 15), ta thấy rằng có thể sử dụng việc tìm chữ số tận cùng để nhận biết một số không phải là số chính phương. Ta cũng có thể nhận biết điều đó thông qua việc tìm hai chữ số tận cùng. 
Ta có tính chất sau đây (bạn đọc tự chứng minh). 
Tính chất 5 : Số tự ... ó các chữ số hàng đơn vị giống nhau. 
3/ Cho hai số tự nhiên a và b. Tìm tất cả các số tự nhiên c sao cho trong ba số, tích của hai số luôn chia hết cho số còn lại. 
Bµi 5 : NGUYÊN LÍ ĐI - RÍCH - LÊ
Nguyên lí Đi-rích-lê phát biểu như sau : “Nếu có m vật đặt vào n cái ngăn kéo và m > n thì có ít nhất một ngăn kéo chứa ít nhất hai vật”. Nguyên lí Đi-rích-lê chỉ giúp ta chứng minh được sự tồn tại “ngăn kéo” chứa ít nhất hai vật mà không chỉ ra được đó là “ngăn kéo” nào. Các bạn hãy làm quen việc vận dụng nguyên lí qua các bài toán sau đây. 
Bài toán 1 : Chứng minh rằng trong 11 số tự nhiên bất kì bao giờ cũng tồn tại ít nhất 2 số có hiệu chia hết cho 10. 
Lời giải : 
Với 11 số tự nhiên khi chia cho 10 ta được 11 số dư, mà một số tự nhiên bất kì khi chia cho 10 có 10 khả năng dư là 0 ; 1 ; 2 ; 3 ; ... ; 9.
Vì có 11 số dư mà chỉ có 10 khả năng dư, theo nguyên lí Đi-rích-lê, tồn tại ít nhất 2 số khi chia cho 10 có cùng số dư do đó hiệu của chúng chia hết cho 10 (đpcm).
Bài toán 2 : Chứng minh rằng tồn tại số có dạng 19941994...199400...0 chia hết cho 1995.
Lời giải : 
Xét 1995 số có dạng : 1994 ; 19941994 ; ... ; . 
Nếu một trong các số trên chia hết cho 1995 thì dễ dàng có đpcm.
Nếu các số trên đều không chia hết cho 1995 thì khi chia từng số cho 1995 sẽ chỉ có 1994 khả năng dư là 1 ; 2 ; 3 ; ... ; 1994. 
Vì có 1995 số dư mà chỉ có 1994 khả năng dư, theo nguyên lí Đi-rích-lê tồn tại ít nhất 2 số khi chia cho 1995 có cùng số dư, hiệu của chúng chia hết cho 1995. Giả sử hai số đó là :
Khi đó : = 1994...199400...0 chia hết cho 1995 (đpcm).
Bài toán 3 : Chứng minh rằng tồn tại số tự nhiên k sao cho (1999^k - 1) chia hết cho104.
Lời giải : Xét 104 + 1 số có dạng :
19991 ; 19992 ; ... ; 1999104 + 1.
Lập luận tương tự bài toán 2 ta được :
(1999m - 1999n) chia hết cho 104 (m > n)
hay 1999n (1999m-n - 1) chia hết cho 104
Vì 1999n và 104 nguyên tố cùng nhau, do đó (1999m-n - 1) chia hết cho 104.
Đặt m - n = k => 1999^k - 1 chia hết cho 104 (đpcm).
Bài toán 4 : Chứng minh rằng tồn tại một số chỉ viết bởi hai chữ số chia hết cho 2003.
Lời giải : Xét 2004 số có dạng 1 ; 11 ; 111 ; ... ; 
Lập luận tương tự bài toán 2 ta được :
hay 11...100...0 chia hết cho 2003 (đpcm).
Một số bài toán tự giải :
Bài toán 5 : Chứng minh rằng mọi số nguyên tố p ta có thể tìm được một số được viết bởi hai chữ số chia hết cho p. 
Bài toán 6 : Chứng minh rằng nếu một số tự nhiên không chia hết cho 2 và 5 thì tồn tại bội của nó có dạng : 111...1.
Bài toán 7 : Chứng minh rằng tồn tại số có dạng 1997k (k thuộc N) có tận cùng là 0001.
Bài toán 8 : Chứng minh rằng nếu các số nguyên m và n nguyên tố cùng nhau thì tìm được số tự nhiên k sao cho mk - 1 chia hết cho n.
Các bạn hãy đón đọc số sau : Nguyên lí Đi-rích-lê với những bài toán hình học thú vị. 
Bµi 6 : NGUYÊN LÍ ĐI-RÍCH-LÊ 
& NHỮNG BÀI TOÁN HÌNH HỌC THÚ VỊ
Nguyên lí có thể mở rộng như sau : Nếu có m vật đặt vào n cái ngăn kéo và m > k.n thì có ít nhất một ngăn kéo chứa ít nhất k + 1 vật. Với mở rộng này, ta còn có thể giải quyết thêm nhiều bài toán khác. Sau đây xin giới thiệu để bạn đọc làm quen việc vận dụng nguyên lí Đi-rích-lê với một số bài toán hình học. 
Bài toán 1 : Trong tam giác đều có cạnh bằng 4 (đơn vị độ dài, được hiểu đến cuối bài viết) lấy 17 điểm. Chứng minh rằng trong 17 điểm đó có ít nhất hai điểm mà khoảng cách giữa chúng không vượt quá 1.
Lời giải : Chia tam giác đều có cạnh bằng 4 thành 16 tam giác đều có cạnh bằng 1 (hình 1). Vì 17 > 16, theo nguyên lí Đi-rích-lê, tồn tại ít nhất một tam giác đều cạnh bằng 1 có chứa ít nhất 2 điểm trong số 17 điểm đã cho. Khoảng cách giữa hai điểm đó luôn không vượt quá 1 (đpcm). 
Bài toán 2 : Trong một hình vuông cạnh bằng 7, lấy 51 điểm. Chứng minh rằng có 3 điểm trong 51 điểm đã cho nằm trong một hình tròn có bán kính bằng 1. 
Lời giải : Chia hình vuông cạnh bằng 7 thành 25 hình vuông bằng nhau, cạnh của mỗi hình vuông nhỏ bằng 5/7 (hình 2). 
Vì 51 điểm đã cho thuộc 25 hình vuông nhỏ, mà 51 > 2.25 nên theo nguyên lí Đi-rích-lê, có ít nhất một hình vuông nhỏ chứa ít nhất 3 điểm (3 = 2 + 1) trong số 51 điểm đã cho. Hình vuông cạnh bằng có bán kính đường tròn ngoại tiếp là : 
Vậy bài toán được chứng minh. Hình tròn này chính là hình tròn bán kính bằng 1, chứa hình vuông ta đã chỉ ra ở trên. 
Bài toán 3 : Trong mặt phẳng cho 2003 điểm sao cho cứ 3 điểm bất kì có ít nhất 2 điểm cách nhau một khoảng không vượt quá 1. Chứng minh rằng : tồn tại một hình tròn bán kính bằng 1 chứa ít nhất 1002 điểm. 
Lời giải : Lấy một điểm A bất kì trong 2003 điểm đã cho, vẽ đường tròn C1 tâm A bán kính bằng 1. 
+ Nếu tất cả các điểm đều nằm trong hình tròn C1 thì hiển nhiên có đpcm. 
+ Nếu tồn tại một điểm B mà khoảng cách giữa A và B lớn hơn 1 thì ta vẽ đường tròn C2 tâm B bán kính bằng 1. 
Khi đó, xét một điểm C bất kì trong số 2001 điểm còn lại. Xét 3 điểm A, B, C, vì AB > 1 nên theo giả thiết ta có AC ≤ 1 hoặc BC ≤ 1. Nói cách khác, điểm C phải thuộc C1 hoặc C2. => 2001 điểm khác B và A phải nằm trong C1 hoặc C2. Theo nguyên lí Đi-rích-lê ta có một hình tròn chứa ít nhất 1001 điểm. Tính thêm tâm của hình tròn này thì hình tròn này chính là hình tròn bán kính bằng 1 chứa ít nhất 1002 điểm trong 2003 điểm đã cho. 
Bài toán 4 : Cho hình bình hành ABCD, kẻ 17 đường thẳng sao cho mỗi đường thẳng chia ABCD thành hai hình thang có tỉ số diện tích bằng 1/3 . Chứng minh rằng, trong 17 đường thẳng đó có 5 đường thẳng đồng quy.
Lời giải : Gọi M, Q, N, P lần lượt là các trung điểm của AB, BC, CD, DA (hình 3). 
Vì ABCD là hình bình hành => MN // AD // BC ; PQ // AB // CD. 
Gọi d là một trong 17 đường thẳng đã cho. Nếu d cắt AB tại E ; CD tại F ; PQ tại L thì LP, LQ lần lượt là đường trung bình của các hình thang AEFD, EBCF. Ta có : 
S(AEFD) / S(EBCF) = 1/3 hoặc S(EBCF) / S(EBFC) = 1/3 => LP / LQ = 1/3 hoặc là LQ / LP = 1/3. 
Trên PQ lấy hai điểm L1, L2 thỏa mãn điều kiện L1P / L1Q = L2Q / L2P = 1/3 khi đó L trùng với L1 hoặc L trùng với L2. Nghĩa là nếu d cắt AB và CD thì d phải qua L1 hoặc L2. 
Tương tự, trên MN lấy hai điểm K1, K2 thỏa mãn điều kiện K1M / K1N = K2N / K2M = 1/3 khi đó nếu d cắt AD và BC thì d phải qua K1 hoặc K2. 
Tóm lại, mỗi đường thẳng trong số 17 đường thẳng đã cho phải đi qua một trong 4 điểm L1 ; L2 ; K1 ; K2. 
Vì 17 > 4.4 nên theo nguyên lí Đi-rích-lê, trong 17 đường thẳng đó sẽ có ít nhất 5 đường thẳng (5 = 4 + 1) cùng đi qua một trong 4 điểm L1 ; L2 ; K1 ; K2 (5 đường thẳng đồng quy, đpcm). 
Sau đây là một số bài tập tương tự. 
Bài 1 : Trong hình chữ nhật có kích thước 3 x 5, lấy 7 điểm bất kì. Chứng minh rằng có hai điểm cách nhau một khoảng không vượt quá 
Bài 2 : Trong mặt phẳng tọa độ, cho ngũ giác lồi có tất cả các đỉnh là các điểm nguyên (có hoành độ và tung độ là số nguyên). Chứng minh rằng trên cạnh hoặc bên trong ngũ giác còn ít nhất một điểm nguyên khác nữa. 
Bài 3 : Tờ giấy hình vuông có cạnh bé nhất là bao nhiêu để có thể cắt ra được 5 hình tròn có bán kính bằng 1. 
Bài 4 : Trên một tờ giấy kẻ ô vuông, chọn 101 ô bất kì. Chứng minh rằng trong 101 ô đó có ít nhất 26 ô không có điểm chung. 
Bµi 7 : BÀN LUẬN VỀ BÀI TOÁN "BA VỊ THẦN"
Chúng ta đều đã biết bài toán thú vị : “Ba vị thần” sau : 
Ngày xưa, trong một ngôi đền cổ có 3 vị thần giống hệt nhau. Thần thật thà (TT) luôn luôn nói thật, thần dối trá (DT) luôn luôn nói dối và thần khôn ngoan (KN) lúc nói thật lúc nói dối. Các vị thần vẫn trả lời câu hỏi của khách đến lễ đền nhưng không ai xác định được chính xác các vị thần. Một hôm có một nhà hiền triết từ xa đến thăm đền. Để xác định được các vị thần, ông hỏi thần bên trái : 
- Ai ngồi cạnh ngài ? 
- Đó là thần TT (1) 
Ông hỏi thần ngồi giữa : 
- Ngài là ai ? 
- Ta là thần KN (2) 
Sau cùng ông hỏi thần bên phải : 
- Ai ngồi cạnh ngài ? 
- Đó là thần DT (3) 
Nhà hiền triết thốt lên : 
- Tôi đã xác định được các vị thần. 
Hỏi nhà hiền triết đã suy luận như thế nào ? 
Lời giải : Gọi 3 vị thần theo thứ tự từ trái sang phải là : A, B, C. 
Từ câu trả lời (1) => A không phải là thần TT. 
Từ câu trả lời (2) => B không phải là thần TT. 
Vậy C là thần TT. Theo (3) đ B là thần DT đ A là thần KN 
Nhận xét : Cả 3 câu hỏi đều tập trung xác định thần B, phải chăng đó là cách hỏi “thông minh” của nhà hiền triết để tìm ra 3 vị thần ? Câu trả lời không phải, mà là nhà hiền triết gặp may do 3 vị thần đã trả lời câu hỏi không “khôn ngoan” ! 
Nếu 3 vị thần trả lời “khôn ngoan” nhất mà vẫn đảm bảo tính chất của từng vị thần thì sau 3 câu hỏi, nhà hiền triết cũng không thể xác định được vị thần nào. Ta sẽ thấy rõ hơn qua phân tích sau về 2 cách hỏi của nhà hiền triết : 
1. Hỏi thần X : 
- Ngài là ai ? 
Có 3 khả năng trả lời sau : 
- Ta là thần TT => không xác định được X (Cách trả lời khôn nhất) 
- Ta là thần KN => X là thần KN hoặc DT 
- Ta là thần DT => X là KN 
2. Hỏi thần X : 
- Ai ngồi cạnh ngài ? 
Cũng có 3 khả năng trả lời sau : 
- Đó là thần TT => thần X khác thần TT 
- Đó là thần KN => không xác định được X (cách trả lời khôn nhất) 
- Đó là thần DT => không xác định được X (cách trả lời khôn nhất) 
Trong cả 2 cách hỏi của nhà hiền triết đều có cách trả lời khiến nhà hiền triết không có được một thông tin nào về ba vị thần thì làm sao mà xác định được các vị thần. Nếu gặp may (do sự trả lời ngờ nghệch) thì chỉ cần sau 2 câu hỏi nhà hiền triết cũng đủ để xác định 3 vị thần. Các bạn tự tìm xem trường hợp đó các câu trả lời của các vị thần là như thế nào nhé. 
Bài toán cổ này thật là hay và dí dỏm, nhưng nếu các vị thần trả lời theo các phương án “khôn ngoan” nhất thì có cách nào để xác định được 3 vị thần sau 1 số ít nhất câu hỏi được không ? 
Rõ ràng là không thể đặt câu hỏi như nhà hiền triết được. 
Phải hỏi như thế nào để thu được nhiều thông tin nhất ? 
Bây giờ ta đặt vấn đề như sau : 
Mỗi lần hỏi chỉ được hỏi 1 vị thần và chính vị đó trả lời. Cần hỏi như thế nào để sau một số ít nhất câu hỏi ta xác định được các vị thần. Bài toán rõ ràng là không dễ chút nào, nhưng tôi tin rằng các bạn sẽ tìm ra nhiều phương án tối ưu đấy ! Sau đây là một phương án của tôi. 
Hỏi thần A : 
- Ngài là thần KN ? 
- Nhận được câu trả lời. 
Hỏi thần B : 
- Ngài là thần KN ? 
- Nhận được câu trả lời. 
Sau đó tôi chỉ cần hỏi thêm 1 hoặc 2 câu nữa là xác định được chính xác 3 vị thần. Như vậy số câu hỏi nhiều nhất là 4. Các bạn có thể rút số câu hỏi xuống dưới 4 được không ? 
Xin mời các bạn hãy giải trí bài toán này bằng một phương án tuyệt vời nào đó (Nhớ là chỉ hỏi một thần và chính vị đó trả lời) 

Tài liệu đính kèm:

  • docCac chuyen de BD HSG Toan 6 Quang0972247068.doc